MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  hltr Structured version   Visualization version   GIF version

Theorem hltr 25218
Description: The half-line relation is transitive. Theorem 6.7 of [Schwabhauser] p. 44. (Contributed by Thierry Arnoux, 23-Feb-2020.)
Hypotheses
Ref Expression
ishlg.p 𝑃 = (Base‘𝐺)
ishlg.i 𝐼 = (Itv‘𝐺)
ishlg.k 𝐾 = (hlG‘𝐺)
ishlg.a (𝜑𝐴𝑃)
ishlg.b (𝜑𝐵𝑃)
ishlg.c (𝜑𝐶𝑃)
hlln.1 (𝜑𝐺 ∈ TarskiG)
hltr.d (𝜑𝐷𝑃)
hltr.1 (𝜑𝐴(𝐾𝐷)𝐵)
hltr.2 (𝜑𝐵(𝐾𝐷)𝐶)
Assertion
Ref Expression
hltr (𝜑𝐴(𝐾𝐷)𝐶)

Proof of Theorem hltr
StepHypRef Expression
1 ishlg.p . . . 4 𝑃 = (Base‘𝐺)
2 ishlg.i . . . 4 𝐼 = (Itv‘𝐺)
3 ishlg.k . . . 4 𝐾 = (hlG‘𝐺)
4 ishlg.a . . . 4 (𝜑𝐴𝑃)
5 ishlg.b . . . 4 (𝜑𝐵𝑃)
6 hltr.d . . . 4 (𝜑𝐷𝑃)
7 hlln.1 . . . 4 (𝜑𝐺 ∈ TarskiG)
8 hltr.1 . . . 4 (𝜑𝐴(𝐾𝐷)𝐵)
91, 2, 3, 4, 5, 6, 7, 8hlne1 25213 . . 3 (𝜑𝐴𝐷)
10 ishlg.c . . . 4 (𝜑𝐶𝑃)
11 hltr.2 . . . 4 (𝜑𝐵(𝐾𝐷)𝐶)
121, 2, 3, 5, 10, 6, 7, 11hlne2 25214 . . 3 (𝜑𝐶𝐷)
13 eqid 2604 . . . . . . 7 (dist‘𝐺) = (dist‘𝐺)
147ad2antrr 757 . . . . . . 7 (((𝜑𝐴 ∈ (𝐷𝐼𝐵)) ∧ 𝐵 ∈ (𝐷𝐼𝐶)) → 𝐺 ∈ TarskiG)
156ad2antrr 757 . . . . . . 7 (((𝜑𝐴 ∈ (𝐷𝐼𝐵)) ∧ 𝐵 ∈ (𝐷𝐼𝐶)) → 𝐷𝑃)
164ad2antrr 757 . . . . . . 7 (((𝜑𝐴 ∈ (𝐷𝐼𝐵)) ∧ 𝐵 ∈ (𝐷𝐼𝐶)) → 𝐴𝑃)
175ad2antrr 757 . . . . . . 7 (((𝜑𝐴 ∈ (𝐷𝐼𝐵)) ∧ 𝐵 ∈ (𝐷𝐼𝐶)) → 𝐵𝑃)
1810ad2antrr 757 . . . . . . 7 (((𝜑𝐴 ∈ (𝐷𝐼𝐵)) ∧ 𝐵 ∈ (𝐷𝐼𝐶)) → 𝐶𝑃)
19 simplr 787 . . . . . . 7 (((𝜑𝐴 ∈ (𝐷𝐼𝐵)) ∧ 𝐵 ∈ (𝐷𝐼𝐶)) → 𝐴 ∈ (𝐷𝐼𝐵))
20 simpr 475 . . . . . . 7 (((𝜑𝐴 ∈ (𝐷𝐼𝐵)) ∧ 𝐵 ∈ (𝐷𝐼𝐶)) → 𝐵 ∈ (𝐷𝐼𝐶))
211, 13, 2, 14, 15, 16, 17, 18, 19, 20tgbtwnexch 25105 . . . . . 6 (((𝜑𝐴 ∈ (𝐷𝐼𝐵)) ∧ 𝐵 ∈ (𝐷𝐼𝐶)) → 𝐴 ∈ (𝐷𝐼𝐶))
2221orcd 405 . . . . 5 (((𝜑𝐴 ∈ (𝐷𝐼𝐵)) ∧ 𝐵 ∈ (𝐷𝐼𝐶)) → (𝐴 ∈ (𝐷𝐼𝐶) ∨ 𝐶 ∈ (𝐷𝐼𝐴)))
237ad2antrr 757 . . . . . 6 (((𝜑𝐴 ∈ (𝐷𝐼𝐵)) ∧ 𝐶 ∈ (𝐷𝐼𝐵)) → 𝐺 ∈ TarskiG)
246ad2antrr 757 . . . . . 6 (((𝜑𝐴 ∈ (𝐷𝐼𝐵)) ∧ 𝐶 ∈ (𝐷𝐼𝐵)) → 𝐷𝑃)
254ad2antrr 757 . . . . . 6 (((𝜑𝐴 ∈ (𝐷𝐼𝐵)) ∧ 𝐶 ∈ (𝐷𝐼𝐵)) → 𝐴𝑃)
2610ad2antrr 757 . . . . . 6 (((𝜑𝐴 ∈ (𝐷𝐼𝐵)) ∧ 𝐶 ∈ (𝐷𝐼𝐵)) → 𝐶𝑃)
275ad2antrr 757 . . . . . 6 (((𝜑𝐴 ∈ (𝐷𝐼𝐵)) ∧ 𝐶 ∈ (𝐷𝐼𝐵)) → 𝐵𝑃)
28 simplr 787 . . . . . 6 (((𝜑𝐴 ∈ (𝐷𝐼𝐵)) ∧ 𝐶 ∈ (𝐷𝐼𝐵)) → 𝐴 ∈ (𝐷𝐼𝐵))
29 simpr 475 . . . . . 6 (((𝜑𝐴 ∈ (𝐷𝐼𝐵)) ∧ 𝐶 ∈ (𝐷𝐼𝐵)) → 𝐶 ∈ (𝐷𝐼𝐵))
301, 2, 23, 24, 25, 26, 27, 28, 29tgbtwnconn3 25185 . . . . 5 (((𝜑𝐴 ∈ (𝐷𝐼𝐵)) ∧ 𝐶 ∈ (𝐷𝐼𝐵)) → (𝐴 ∈ (𝐷𝐼𝐶) ∨ 𝐶 ∈ (𝐷𝐼𝐴)))
311, 2, 3, 5, 10, 6, 7ishlg 25210 . . . . . . . 8 (𝜑 → (𝐵(𝐾𝐷)𝐶 ↔ (𝐵𝐷𝐶𝐷 ∧ (𝐵 ∈ (𝐷𝐼𝐶) ∨ 𝐶 ∈ (𝐷𝐼𝐵)))))
3211, 31mpbid 220 . . . . . . 7 (𝜑 → (𝐵𝐷𝐶𝐷 ∧ (𝐵 ∈ (𝐷𝐼𝐶) ∨ 𝐶 ∈ (𝐷𝐼𝐵))))
3332simp3d 1067 . . . . . 6 (𝜑 → (𝐵 ∈ (𝐷𝐼𝐶) ∨ 𝐶 ∈ (𝐷𝐼𝐵)))
3433adantr 479 . . . . 5 ((𝜑𝐴 ∈ (𝐷𝐼𝐵)) → (𝐵 ∈ (𝐷𝐼𝐶) ∨ 𝐶 ∈ (𝐷𝐼𝐵)))
3522, 30, 34mpjaodan 822 . . . 4 ((𝜑𝐴 ∈ (𝐷𝐼𝐵)) → (𝐴 ∈ (𝐷𝐼𝐶) ∨ 𝐶 ∈ (𝐷𝐼𝐴)))
367ad2antrr 757 . . . . . 6 (((𝜑𝐵 ∈ (𝐷𝐼𝐴)) ∧ 𝐵 ∈ (𝐷𝐼𝐶)) → 𝐺 ∈ TarskiG)
376ad2antrr 757 . . . . . 6 (((𝜑𝐵 ∈ (𝐷𝐼𝐴)) ∧ 𝐵 ∈ (𝐷𝐼𝐶)) → 𝐷𝑃)
385ad2antrr 757 . . . . . 6 (((𝜑𝐵 ∈ (𝐷𝐼𝐴)) ∧ 𝐵 ∈ (𝐷𝐼𝐶)) → 𝐵𝑃)
394ad2antrr 757 . . . . . 6 (((𝜑𝐵 ∈ (𝐷𝐼𝐴)) ∧ 𝐵 ∈ (𝐷𝐼𝐶)) → 𝐴𝑃)
4010ad2antrr 757 . . . . . 6 (((𝜑𝐵 ∈ (𝐷𝐼𝐴)) ∧ 𝐵 ∈ (𝐷𝐼𝐶)) → 𝐶𝑃)
4132simp1d 1065 . . . . . . . 8 (𝜑𝐵𝐷)
4241necomd 2831 . . . . . . 7 (𝜑𝐷𝐵)
4342ad2antrr 757 . . . . . 6 (((𝜑𝐵 ∈ (𝐷𝐼𝐴)) ∧ 𝐵 ∈ (𝐷𝐼𝐶)) → 𝐷𝐵)
44 simplr 787 . . . . . 6 (((𝜑𝐵 ∈ (𝐷𝐼𝐴)) ∧ 𝐵 ∈ (𝐷𝐼𝐶)) → 𝐵 ∈ (𝐷𝐼𝐴))
45 simpr 475 . . . . . 6 (((𝜑𝐵 ∈ (𝐷𝐼𝐴)) ∧ 𝐵 ∈ (𝐷𝐼𝐶)) → 𝐵 ∈ (𝐷𝐼𝐶))
461, 2, 36, 37, 38, 39, 40, 43, 44, 45tgbtwnconn1 25183 . . . . 5 (((𝜑𝐵 ∈ (𝐷𝐼𝐴)) ∧ 𝐵 ∈ (𝐷𝐼𝐶)) → (𝐴 ∈ (𝐷𝐼𝐶) ∨ 𝐶 ∈ (𝐷𝐼𝐴)))
477ad2antrr 757 . . . . . . 7 (((𝜑𝐵 ∈ (𝐷𝐼𝐴)) ∧ 𝐶 ∈ (𝐷𝐼𝐵)) → 𝐺 ∈ TarskiG)
486ad2antrr 757 . . . . . . 7 (((𝜑𝐵 ∈ (𝐷𝐼𝐴)) ∧ 𝐶 ∈ (𝐷𝐼𝐵)) → 𝐷𝑃)
4910ad2antrr 757 . . . . . . 7 (((𝜑𝐵 ∈ (𝐷𝐼𝐴)) ∧ 𝐶 ∈ (𝐷𝐼𝐵)) → 𝐶𝑃)
505ad2antrr 757 . . . . . . 7 (((𝜑𝐵 ∈ (𝐷𝐼𝐴)) ∧ 𝐶 ∈ (𝐷𝐼𝐵)) → 𝐵𝑃)
514ad2antrr 757 . . . . . . 7 (((𝜑𝐵 ∈ (𝐷𝐼𝐴)) ∧ 𝐶 ∈ (𝐷𝐼𝐵)) → 𝐴𝑃)
52 simpr 475 . . . . . . 7 (((𝜑𝐵 ∈ (𝐷𝐼𝐴)) ∧ 𝐶 ∈ (𝐷𝐼𝐵)) → 𝐶 ∈ (𝐷𝐼𝐵))
53 simplr 787 . . . . . . 7 (((𝜑𝐵 ∈ (𝐷𝐼𝐴)) ∧ 𝐶 ∈ (𝐷𝐼𝐵)) → 𝐵 ∈ (𝐷𝐼𝐴))
541, 13, 2, 47, 48, 49, 50, 51, 52, 53tgbtwnexch 25105 . . . . . 6 (((𝜑𝐵 ∈ (𝐷𝐼𝐴)) ∧ 𝐶 ∈ (𝐷𝐼𝐵)) → 𝐶 ∈ (𝐷𝐼𝐴))
5554olcd 406 . . . . 5 (((𝜑𝐵 ∈ (𝐷𝐼𝐴)) ∧ 𝐶 ∈ (𝐷𝐼𝐵)) → (𝐴 ∈ (𝐷𝐼𝐶) ∨ 𝐶 ∈ (𝐷𝐼𝐴)))
5633adantr 479 . . . . 5 ((𝜑𝐵 ∈ (𝐷𝐼𝐴)) → (𝐵 ∈ (𝐷𝐼𝐶) ∨ 𝐶 ∈ (𝐷𝐼𝐵)))
5746, 55, 56mpjaodan 822 . . . 4 ((𝜑𝐵 ∈ (𝐷𝐼𝐴)) → (𝐴 ∈ (𝐷𝐼𝐶) ∨ 𝐶 ∈ (𝐷𝐼𝐴)))
581, 2, 3, 4, 5, 6, 7ishlg 25210 . . . . . 6 (𝜑 → (𝐴(𝐾𝐷)𝐵 ↔ (𝐴𝐷𝐵𝐷 ∧ (𝐴 ∈ (𝐷𝐼𝐵) ∨ 𝐵 ∈ (𝐷𝐼𝐴)))))
598, 58mpbid 220 . . . . 5 (𝜑 → (𝐴𝐷𝐵𝐷 ∧ (𝐴 ∈ (𝐷𝐼𝐵) ∨ 𝐵 ∈ (𝐷𝐼𝐴))))
6059simp3d 1067 . . . 4 (𝜑 → (𝐴 ∈ (𝐷𝐼𝐵) ∨ 𝐵 ∈ (𝐷𝐼𝐴)))
6135, 57, 60mpjaodan 822 . . 3 (𝜑 → (𝐴 ∈ (𝐷𝐼𝐶) ∨ 𝐶 ∈ (𝐷𝐼𝐴)))
629, 12, 613jca 1234 . 2 (𝜑 → (𝐴𝐷𝐶𝐷 ∧ (𝐴 ∈ (𝐷𝐼𝐶) ∨ 𝐶 ∈ (𝐷𝐼𝐴))))
631, 2, 3, 4, 10, 6, 7ishlg 25210 . 2 (𝜑 → (𝐴(𝐾𝐷)𝐶 ↔ (𝐴𝐷𝐶𝐷 ∧ (𝐴 ∈ (𝐷𝐼𝐶) ∨ 𝐶 ∈ (𝐷𝐼𝐴)))))
6462, 63mpbird 245 1 (𝜑𝐴(𝐾𝐷)𝐶)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wo 381  wa 382  w3a 1030   = wceq 1474  wcel 1975  wne 2774   class class class wbr 4572  cfv 5785  (class class class)co 6522  Basecbs 15636  distcds 15718  TarskiGcstrkg 25041  Itvcitv 25047  hlGchlg 25208
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1711  ax-4 1726  ax-5 1825  ax-6 1873  ax-7 1920  ax-8 1977  ax-9 1984  ax-10 2004  ax-11 2019  ax-12 2031  ax-13 2227  ax-ext 2584  ax-rep 4688  ax-sep 4698  ax-nul 4707  ax-pow 4759  ax-pr 4823  ax-un 6819  ax-cnex 9843  ax-resscn 9844  ax-1cn 9845  ax-icn 9846  ax-addcl 9847  ax-addrcl 9848  ax-mulcl 9849  ax-mulrcl 9850  ax-mulcom 9851  ax-addass 9852  ax-mulass 9853  ax-distr 9854  ax-i2m1 9855  ax-1ne0 9856  ax-1rid 9857  ax-rnegex 9858  ax-rrecex 9859  ax-cnre 9860  ax-pre-lttri 9861  ax-pre-lttrn 9862  ax-pre-ltadd 9863  ax-pre-mulgt0 9864
This theorem depends on definitions:  df-bi 195  df-or 383  df-an 384  df-3or 1031  df-3an 1032  df-tru 1477  df-ex 1695  df-nf 1700  df-sb 1866  df-eu 2456  df-mo 2457  df-clab 2591  df-cleq 2597  df-clel 2600  df-nfc 2734  df-ne 2776  df-nel 2777  df-ral 2895  df-rex 2896  df-reu 2897  df-rmo 2898  df-rab 2899  df-v 3169  df-sbc 3397  df-csb 3494  df-dif 3537  df-un 3539  df-in 3541  df-ss 3548  df-pss 3550  df-nul 3869  df-if 4031  df-pw 4104  df-sn 4120  df-pr 4122  df-tp 4124  df-op 4126  df-uni 4362  df-int 4400  df-iun 4446  df-br 4573  df-opab 4633  df-mpt 4634  df-tr 4670  df-eprel 4934  df-id 4938  df-po 4944  df-so 4945  df-fr 4982  df-we 4984  df-xp 5029  df-rel 5030  df-cnv 5031  df-co 5032  df-dm 5033  df-rn 5034  df-res 5035  df-ima 5036  df-pred 5578  df-ord 5624  df-on 5625  df-lim 5626  df-suc 5627  df-iota 5749  df-fun 5787  df-fn 5788  df-f 5789  df-f1 5790  df-fo 5791  df-f1o 5792  df-fv 5793  df-riota 6484  df-ov 6525  df-oprab 6526  df-mpt2 6527  df-om 6930  df-1st 7031  df-2nd 7032  df-wrecs 7266  df-recs 7327  df-rdg 7365  df-1o 7419  df-oadd 7423  df-er 7601  df-pm 7719  df-en 7814  df-dom 7815  df-sdom 7816  df-fin 7817  df-card 8620  df-cda 8845  df-pnf 9927  df-mnf 9928  df-xr 9929  df-ltxr 9930  df-le 9931  df-sub 10114  df-neg 10115  df-nn 10863  df-2 10921  df-3 10922  df-n0 11135  df-z 11206  df-uz 11515  df-fz 12148  df-fzo 12285  df-hash 12930  df-word 13095  df-concat 13097  df-s1 13098  df-s2 13385  df-s3 13386  df-trkgc 25059  df-trkgb 25060  df-trkgcb 25061  df-trkg 25064  df-cgrg 25119  df-hlg 25209
This theorem is referenced by:  opphllem4  25355  cgrahl1  25421  cgrahl2  25422  cgrahl  25431  acopyeu  25438  inaghl  25444
  Copyright terms: Public domain W3C validator