MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  hmeocnv Structured version   Visualization version   GIF version

Theorem hmeocnv 21470
Description: The converse of a homeomorphism is a homeomorphism. (Contributed by FL, 5-Mar-2007.) (Revised by Mario Carneiro, 22-Aug-2015.)
Assertion
Ref Expression
hmeocnv (𝐹 ∈ (𝐽Homeo𝐾) → 𝐹 ∈ (𝐾Homeo𝐽))

Proof of Theorem hmeocnv
StepHypRef Expression
1 hmeocnvcn 21469 . 2 (𝐹 ∈ (𝐽Homeo𝐾) → 𝐹 ∈ (𝐾 Cn 𝐽))
2 hmeocn 21468 . . . . 5 (𝐹 ∈ (𝐽Homeo𝐾) → 𝐹 ∈ (𝐽 Cn 𝐾))
3 eqid 2626 . . . . . 6 𝐽 = 𝐽
4 eqid 2626 . . . . . 6 𝐾 = 𝐾
53, 4cnf 20955 . . . . 5 (𝐹 ∈ (𝐽 Cn 𝐾) → 𝐹: 𝐽 𝐾)
6 frel 6009 . . . . 5 (𝐹: 𝐽 𝐾 → Rel 𝐹)
72, 5, 63syl 18 . . . 4 (𝐹 ∈ (𝐽Homeo𝐾) → Rel 𝐹)
8 dfrel2 5546 . . . 4 (Rel 𝐹𝐹 = 𝐹)
97, 8sylib 208 . . 3 (𝐹 ∈ (𝐽Homeo𝐾) → 𝐹 = 𝐹)
109, 2eqeltrd 2704 . 2 (𝐹 ∈ (𝐽Homeo𝐾) → 𝐹 ∈ (𝐽 Cn 𝐾))
11 ishmeo 21467 . 2 (𝐹 ∈ (𝐾Homeo𝐽) ↔ (𝐹 ∈ (𝐾 Cn 𝐽) ∧ 𝐹 ∈ (𝐽 Cn 𝐾)))
121, 10, 11sylanbrc 697 1 (𝐹 ∈ (𝐽Homeo𝐾) → 𝐹 ∈ (𝐾Homeo𝐽))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1480  wcel 1992   cuni 4407  ccnv 5078  Rel wrel 5084  wf 5846  (class class class)co 6605   Cn ccn 20933  Homeochmeo 21461
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1841  ax-6 1890  ax-7 1937  ax-8 1994  ax-9 2001  ax-10 2021  ax-11 2036  ax-12 2049  ax-13 2250  ax-ext 2606  ax-sep 4746  ax-nul 4754  ax-pow 4808  ax-pr 4872  ax-un 6903
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1038  df-tru 1483  df-ex 1702  df-nf 1707  df-sb 1883  df-eu 2478  df-mo 2479  df-clab 2613  df-cleq 2619  df-clel 2622  df-nfc 2756  df-ne 2797  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3193  df-sbc 3423  df-dif 3563  df-un 3565  df-in 3567  df-ss 3574  df-nul 3897  df-if 4064  df-pw 4137  df-sn 4154  df-pr 4156  df-op 4160  df-uni 4408  df-br 4619  df-opab 4679  df-mpt 4680  df-id 4994  df-xp 5085  df-rel 5086  df-cnv 5087  df-co 5088  df-dm 5089  df-rn 5090  df-res 5091  df-ima 5092  df-iota 5813  df-fun 5852  df-fn 5853  df-f 5854  df-fv 5858  df-ov 6608  df-oprab 6609  df-mpt2 6610  df-map 7805  df-top 20616  df-topon 20618  df-cn 20936  df-hmeo 21463
This theorem is referenced by:  hmeocnvb  21482  hmphsym  21490  xpstopnlem2  21519
  Copyright terms: Public domain W3C validator