MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  hmeoco Structured version   Visualization version   GIF version

Theorem hmeoco 21485
Description: The composite of two homeomorphisms is a homeomorphism. (Contributed by FL, 9-Mar-2007.) (Proof shortened by Mario Carneiro, 23-Aug-2015.)
Assertion
Ref Expression
hmeoco ((𝐹 ∈ (𝐽Homeo𝐾) ∧ 𝐺 ∈ (𝐾Homeo𝐿)) → (𝐺𝐹) ∈ (𝐽Homeo𝐿))

Proof of Theorem hmeoco
StepHypRef Expression
1 hmeocn 21473 . . 3 (𝐹 ∈ (𝐽Homeo𝐾) → 𝐹 ∈ (𝐽 Cn 𝐾))
2 hmeocn 21473 . . 3 (𝐺 ∈ (𝐾Homeo𝐿) → 𝐺 ∈ (𝐾 Cn 𝐿))
3 cnco 20980 . . 3 ((𝐹 ∈ (𝐽 Cn 𝐾) ∧ 𝐺 ∈ (𝐾 Cn 𝐿)) → (𝐺𝐹) ∈ (𝐽 Cn 𝐿))
41, 2, 3syl2an 494 . 2 ((𝐹 ∈ (𝐽Homeo𝐾) ∧ 𝐺 ∈ (𝐾Homeo𝐿)) → (𝐺𝐹) ∈ (𝐽 Cn 𝐿))
5 cnvco 5268 . . 3 (𝐺𝐹) = (𝐹𝐺)
6 hmeocnvcn 21474 . . . 4 (𝐺 ∈ (𝐾Homeo𝐿) → 𝐺 ∈ (𝐿 Cn 𝐾))
7 hmeocnvcn 21474 . . . 4 (𝐹 ∈ (𝐽Homeo𝐾) → 𝐹 ∈ (𝐾 Cn 𝐽))
8 cnco 20980 . . . 4 ((𝐺 ∈ (𝐿 Cn 𝐾) ∧ 𝐹 ∈ (𝐾 Cn 𝐽)) → (𝐹𝐺) ∈ (𝐿 Cn 𝐽))
96, 7, 8syl2anr 495 . . 3 ((𝐹 ∈ (𝐽Homeo𝐾) ∧ 𝐺 ∈ (𝐾Homeo𝐿)) → (𝐹𝐺) ∈ (𝐿 Cn 𝐽))
105, 9syl5eqel 2702 . 2 ((𝐹 ∈ (𝐽Homeo𝐾) ∧ 𝐺 ∈ (𝐾Homeo𝐿)) → (𝐺𝐹) ∈ (𝐿 Cn 𝐽))
11 ishmeo 21472 . 2 ((𝐺𝐹) ∈ (𝐽Homeo𝐿) ↔ ((𝐺𝐹) ∈ (𝐽 Cn 𝐿) ∧ (𝐺𝐹) ∈ (𝐿 Cn 𝐽)))
124, 10, 11sylanbrc 697 1 ((𝐹 ∈ (𝐽Homeo𝐾) ∧ 𝐺 ∈ (𝐾Homeo𝐿)) → (𝐺𝐹) ∈ (𝐽Homeo𝐿))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 384  wcel 1987  ccnv 5073  ccom 5078  (class class class)co 6604   Cn ccn 20938  Homeochmeo 21466
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-8 1989  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601  ax-sep 4741  ax-nul 4749  ax-pow 4803  ax-pr 4867  ax-un 6902
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1038  df-tru 1483  df-ex 1702  df-nf 1707  df-sb 1878  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-ne 2791  df-ral 2912  df-rex 2913  df-rab 2916  df-v 3188  df-sbc 3418  df-dif 3558  df-un 3560  df-in 3562  df-ss 3569  df-nul 3892  df-if 4059  df-pw 4132  df-sn 4149  df-pr 4151  df-op 4155  df-uni 4403  df-br 4614  df-opab 4674  df-mpt 4675  df-id 4989  df-xp 5080  df-rel 5081  df-cnv 5082  df-co 5083  df-dm 5084  df-rn 5085  df-res 5086  df-ima 5087  df-iota 5810  df-fun 5849  df-fn 5850  df-f 5851  df-fv 5855  df-ov 6607  df-oprab 6608  df-mpt2 6609  df-map 7804  df-top 20621  df-topon 20623  df-cn 20941  df-hmeo 21468
This theorem is referenced by:  hmphtr  21496  xpstopnlem1  21522  tgpconncomp  21826  tsmsxplem1  21866
  Copyright terms: Public domain W3C validator