HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  hodsi Structured version   Visualization version   GIF version

Theorem hodsi 28864
Description: Relationship between Hilbert space operator difference and sum. (Contributed by NM, 17-Nov-2000.) (New usage is discouraged.)
Hypotheses
Ref Expression
hods.1 𝑅: ℋ⟶ ℋ
hods.2 𝑆: ℋ⟶ ℋ
hods.3 𝑇: ℋ⟶ ℋ
Assertion
Ref Expression
hodsi ((𝑅op 𝑆) = 𝑇 ↔ (𝑆 +op 𝑇) = 𝑅)

Proof of Theorem hodsi
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 hods.1 . . . . . 6 𝑅: ℋ⟶ ℋ
21ffvelrni 6473 . . . . 5 (𝑥 ∈ ℋ → (𝑅𝑥) ∈ ℋ)
3 hods.2 . . . . . 6 𝑆: ℋ⟶ ℋ
43ffvelrni 6473 . . . . 5 (𝑥 ∈ ℋ → (𝑆𝑥) ∈ ℋ)
5 hods.3 . . . . . 6 𝑇: ℋ⟶ ℋ
65ffvelrni 6473 . . . . 5 (𝑥 ∈ ℋ → (𝑇𝑥) ∈ ℋ)
7 hvsubadd 28164 . . . . 5 (((𝑅𝑥) ∈ ℋ ∧ (𝑆𝑥) ∈ ℋ ∧ (𝑇𝑥) ∈ ℋ) → (((𝑅𝑥) − (𝑆𝑥)) = (𝑇𝑥) ↔ ((𝑆𝑥) + (𝑇𝑥)) = (𝑅𝑥)))
82, 4, 6, 7syl3anc 1439 . . . 4 (𝑥 ∈ ℋ → (((𝑅𝑥) − (𝑆𝑥)) = (𝑇𝑥) ↔ ((𝑆𝑥) + (𝑇𝑥)) = (𝑅𝑥)))
9 hodval 28831 . . . . . 6 ((𝑅: ℋ⟶ ℋ ∧ 𝑆: ℋ⟶ ℋ ∧ 𝑥 ∈ ℋ) → ((𝑅op 𝑆)‘𝑥) = ((𝑅𝑥) − (𝑆𝑥)))
101, 3, 9mp3an12 1527 . . . . 5 (𝑥 ∈ ℋ → ((𝑅op 𝑆)‘𝑥) = ((𝑅𝑥) − (𝑆𝑥)))
1110eqeq1d 2726 . . . 4 (𝑥 ∈ ℋ → (((𝑅op 𝑆)‘𝑥) = (𝑇𝑥) ↔ ((𝑅𝑥) − (𝑆𝑥)) = (𝑇𝑥)))
12 hosval 28829 . . . . . 6 ((𝑆: ℋ⟶ ℋ ∧ 𝑇: ℋ⟶ ℋ ∧ 𝑥 ∈ ℋ) → ((𝑆 +op 𝑇)‘𝑥) = ((𝑆𝑥) + (𝑇𝑥)))
133, 5, 12mp3an12 1527 . . . . 5 (𝑥 ∈ ℋ → ((𝑆 +op 𝑇)‘𝑥) = ((𝑆𝑥) + (𝑇𝑥)))
1413eqeq1d 2726 . . . 4 (𝑥 ∈ ℋ → (((𝑆 +op 𝑇)‘𝑥) = (𝑅𝑥) ↔ ((𝑆𝑥) + (𝑇𝑥)) = (𝑅𝑥)))
158, 11, 143bitr4d 300 . . 3 (𝑥 ∈ ℋ → (((𝑅op 𝑆)‘𝑥) = (𝑇𝑥) ↔ ((𝑆 +op 𝑇)‘𝑥) = (𝑅𝑥)))
1615ralbiia 3081 . 2 (∀𝑥 ∈ ℋ ((𝑅op 𝑆)‘𝑥) = (𝑇𝑥) ↔ ∀𝑥 ∈ ℋ ((𝑆 +op 𝑇)‘𝑥) = (𝑅𝑥))
171, 3hosubcli 28858 . . 3 (𝑅op 𝑆): ℋ⟶ ℋ
1817, 5hoeqi 28850 . 2 (∀𝑥 ∈ ℋ ((𝑅op 𝑆)‘𝑥) = (𝑇𝑥) ↔ (𝑅op 𝑆) = 𝑇)
193, 5hoaddcli 28857 . . 3 (𝑆 +op 𝑇): ℋ⟶ ℋ
2019, 1hoeqi 28850 . 2 (∀𝑥 ∈ ℋ ((𝑆 +op 𝑇)‘𝑥) = (𝑅𝑥) ↔ (𝑆 +op 𝑇) = 𝑅)
2116, 18, 203bitr3i 290 1 ((𝑅op 𝑆) = 𝑇 ↔ (𝑆 +op 𝑇) = 𝑅)
Colors of variables: wff setvar class
Syntax hints:  wb 196   = wceq 1596  wcel 2103  wral 3014  wf 5997  cfv 6001  (class class class)co 6765  chil 28006   + cva 28007   cmv 28012   +op chos 28025  op chod 28027
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1835  ax-4 1850  ax-5 1952  ax-6 2018  ax-7 2054  ax-8 2105  ax-9 2112  ax-10 2132  ax-11 2147  ax-12 2160  ax-13 2355  ax-ext 2704  ax-rep 4879  ax-sep 4889  ax-nul 4897  ax-pow 4948  ax-pr 5011  ax-un 7066  ax-resscn 10106  ax-1cn 10107  ax-icn 10108  ax-addcl 10109  ax-addrcl 10110  ax-mulcl 10111  ax-mulrcl 10112  ax-mulcom 10113  ax-addass 10114  ax-mulass 10115  ax-distr 10116  ax-i2m1 10117  ax-1ne0 10118  ax-1rid 10119  ax-rnegex 10120  ax-rrecex 10121  ax-cnre 10122  ax-pre-lttri 10123  ax-pre-lttrn 10124  ax-pre-ltadd 10125  ax-hilex 28086  ax-hfvadd 28087  ax-hvcom 28088  ax-hvass 28089  ax-hv0cl 28090  ax-hvaddid 28091  ax-hfvmul 28092  ax-hvmulid 28093  ax-hvdistr2 28096  ax-hvmul0 28097
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1073  df-3an 1074  df-tru 1599  df-ex 1818  df-nf 1823  df-sb 2011  df-eu 2575  df-mo 2576  df-clab 2711  df-cleq 2717  df-clel 2720  df-nfc 2855  df-ne 2897  df-nel 3000  df-ral 3019  df-rex 3020  df-reu 3021  df-rab 3023  df-v 3306  df-sbc 3542  df-csb 3640  df-dif 3683  df-un 3685  df-in 3687  df-ss 3694  df-nul 4024  df-if 4195  df-pw 4268  df-sn 4286  df-pr 4288  df-op 4292  df-uni 4545  df-iun 4630  df-br 4761  df-opab 4821  df-mpt 4838  df-id 5128  df-po 5139  df-so 5140  df-xp 5224  df-rel 5225  df-cnv 5226  df-co 5227  df-dm 5228  df-rn 5229  df-res 5230  df-ima 5231  df-iota 5964  df-fun 6003  df-fn 6004  df-f 6005  df-f1 6006  df-fo 6007  df-f1o 6008  df-fv 6009  df-riota 6726  df-ov 6768  df-oprab 6769  df-mpt2 6770  df-er 7862  df-map 7976  df-en 8073  df-dom 8074  df-sdom 8075  df-pnf 10189  df-mnf 10190  df-ltxr 10192  df-sub 10381  df-neg 10382  df-hvsub 28058  df-hosum 28819  df-hodif 28821
This theorem is referenced by:  hodidi  28876  hodseqi  28883  ho0subi  28884  hosd1i  28911  pjoci  29269
  Copyright terms: Public domain W3C validator