HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  hoeqi Structured version   Visualization version   GIF version

Theorem hoeqi 28466
Description: Equality of Hilbert space operators. (Contributed by NM, 14-Nov-2000.) (New usage is discouraged.)
Hypotheses
Ref Expression
hoeq.1 𝑆: ℋ⟶ ℋ
hoeq.2 𝑇: ℋ⟶ ℋ
Assertion
Ref Expression
hoeqi (∀𝑥 ∈ ℋ (𝑆𝑥) = (𝑇𝑥) ↔ 𝑆 = 𝑇)
Distinct variable groups:   𝑥,𝑆   𝑥,𝑇

Proof of Theorem hoeqi
StepHypRef Expression
1 hoeq.1 . 2 𝑆: ℋ⟶ ℋ
2 hoeq.2 . 2 𝑇: ℋ⟶ ℋ
3 hoeq 28465 . 2 ((𝑆: ℋ⟶ ℋ ∧ 𝑇: ℋ⟶ ℋ) → (∀𝑥 ∈ ℋ (𝑆𝑥) = (𝑇𝑥) ↔ 𝑆 = 𝑇))
41, 2, 3mp2an 707 1 (∀𝑥 ∈ ℋ (𝑆𝑥) = (𝑇𝑥) ↔ 𝑆 = 𝑇)
Colors of variables: wff setvar class
Syntax hints:  wb 196   = wceq 1480  wral 2907  wf 5843  cfv 5847  chil 27622
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-8 1989  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601  ax-sep 4741  ax-nul 4749  ax-pow 4803  ax-pr 4867
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1038  df-tru 1483  df-ex 1702  df-nf 1707  df-sb 1878  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-ral 2912  df-rex 2913  df-rab 2916  df-v 3188  df-sbc 3418  df-csb 3515  df-dif 3558  df-un 3560  df-in 3562  df-ss 3569  df-nul 3892  df-if 4059  df-sn 4149  df-pr 4151  df-op 4155  df-uni 4403  df-br 4614  df-opab 4674  df-mpt 4675  df-id 4989  df-xp 5080  df-rel 5081  df-cnv 5082  df-co 5083  df-dm 5084  df-rn 5085  df-res 5086  df-ima 5087  df-iota 5810  df-fun 5849  df-fn 5850  df-f 5851  df-fv 5855
This theorem is referenced by:  hoaddcomi  28477  hodsi  28480  hoaddassi  28481  hocadddiri  28484  hocsubdiri  28485  hoaddid1i  28491  ho0coi  28493  hoid1i  28494  hoid1ri  28495  honegsubi  28501  hoddii  28694  pjsdii  28860  pjddii  28861  pjss1coi  28868  pjss2coi  28869  pjorthcoi  28874  pjscji  28875  pjtoi  28884  pjclem4  28904  pj3si  28912  pj3cor1i  28914
  Copyright terms: Public domain W3C validator