MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  hofpropd Structured version   Visualization version   GIF version

Theorem hofpropd 16828
Description: If two categories have the same set of objects, morphisms, and compositions, then they have the same Hom functor. (Contributed by Mario Carneiro, 26-Jan-2017.)
Hypotheses
Ref Expression
hofpropd.1 (𝜑 → (Homf𝐶) = (Homf𝐷))
hofpropd.2 (𝜑 → (compf𝐶) = (compf𝐷))
hofpropd.c (𝜑𝐶 ∈ Cat)
hofpropd.d (𝜑𝐷 ∈ Cat)
Assertion
Ref Expression
hofpropd (𝜑 → (HomF𝐶) = (HomF𝐷))

Proof of Theorem hofpropd
Dummy variables 𝑓 𝑔 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 hofpropd.1 . . 3 (𝜑 → (Homf𝐶) = (Homf𝐷))
21homfeqbas 16277 . . . . 5 (𝜑 → (Base‘𝐶) = (Base‘𝐷))
32sqxpeqd 5101 . . . 4 (𝜑 → ((Base‘𝐶) × (Base‘𝐶)) = ((Base‘𝐷) × (Base‘𝐷)))
43adantr 481 . . . 4 ((𝜑𝑥 ∈ ((Base‘𝐶) × (Base‘𝐶))) → ((Base‘𝐶) × (Base‘𝐶)) = ((Base‘𝐷) × (Base‘𝐷)))
5 eqid 2621 . . . . . 6 (Base‘𝐶) = (Base‘𝐶)
6 eqid 2621 . . . . . 6 (Hom ‘𝐶) = (Hom ‘𝐶)
7 eqid 2621 . . . . . 6 (Hom ‘𝐷) = (Hom ‘𝐷)
81adantr 481 . . . . . 6 ((𝜑 ∧ (𝑥 ∈ ((Base‘𝐶) × (Base‘𝐶)) ∧ 𝑦 ∈ ((Base‘𝐶) × (Base‘𝐶)))) → (Homf𝐶) = (Homf𝐷))
9 xp1st 7143 . . . . . . 7 (𝑦 ∈ ((Base‘𝐶) × (Base‘𝐶)) → (1st𝑦) ∈ (Base‘𝐶))
109ad2antll 764 . . . . . 6 ((𝜑 ∧ (𝑥 ∈ ((Base‘𝐶) × (Base‘𝐶)) ∧ 𝑦 ∈ ((Base‘𝐶) × (Base‘𝐶)))) → (1st𝑦) ∈ (Base‘𝐶))
11 xp1st 7143 . . . . . . 7 (𝑥 ∈ ((Base‘𝐶) × (Base‘𝐶)) → (1st𝑥) ∈ (Base‘𝐶))
1211ad2antrl 763 . . . . . 6 ((𝜑 ∧ (𝑥 ∈ ((Base‘𝐶) × (Base‘𝐶)) ∧ 𝑦 ∈ ((Base‘𝐶) × (Base‘𝐶)))) → (1st𝑥) ∈ (Base‘𝐶))
135, 6, 7, 8, 10, 12homfeqval 16278 . . . . 5 ((𝜑 ∧ (𝑥 ∈ ((Base‘𝐶) × (Base‘𝐶)) ∧ 𝑦 ∈ ((Base‘𝐶) × (Base‘𝐶)))) → ((1st𝑦)(Hom ‘𝐶)(1st𝑥)) = ((1st𝑦)(Hom ‘𝐷)(1st𝑥)))
14 xp2nd 7144 . . . . . . . 8 (𝑥 ∈ ((Base‘𝐶) × (Base‘𝐶)) → (2nd𝑥) ∈ (Base‘𝐶))
1514ad2antrl 763 . . . . . . 7 ((𝜑 ∧ (𝑥 ∈ ((Base‘𝐶) × (Base‘𝐶)) ∧ 𝑦 ∈ ((Base‘𝐶) × (Base‘𝐶)))) → (2nd𝑥) ∈ (Base‘𝐶))
16 xp2nd 7144 . . . . . . . 8 (𝑦 ∈ ((Base‘𝐶) × (Base‘𝐶)) → (2nd𝑦) ∈ (Base‘𝐶))
1716ad2antll 764 . . . . . . 7 ((𝜑 ∧ (𝑥 ∈ ((Base‘𝐶) × (Base‘𝐶)) ∧ 𝑦 ∈ ((Base‘𝐶) × (Base‘𝐶)))) → (2nd𝑦) ∈ (Base‘𝐶))
185, 6, 7, 8, 15, 17homfeqval 16278 . . . . . 6 ((𝜑 ∧ (𝑥 ∈ ((Base‘𝐶) × (Base‘𝐶)) ∧ 𝑦 ∈ ((Base‘𝐶) × (Base‘𝐶)))) → ((2nd𝑥)(Hom ‘𝐶)(2nd𝑦)) = ((2nd𝑥)(Hom ‘𝐷)(2nd𝑦)))
1918adantr 481 . . . . 5 (((𝜑 ∧ (𝑥 ∈ ((Base‘𝐶) × (Base‘𝐶)) ∧ 𝑦 ∈ ((Base‘𝐶) × (Base‘𝐶)))) ∧ 𝑓 ∈ ((1st𝑦)(Hom ‘𝐶)(1st𝑥))) → ((2nd𝑥)(Hom ‘𝐶)(2nd𝑦)) = ((2nd𝑥)(Hom ‘𝐷)(2nd𝑦)))
205, 6, 7, 8, 12, 15homfeqval 16278 . . . . . . . . 9 ((𝜑 ∧ (𝑥 ∈ ((Base‘𝐶) × (Base‘𝐶)) ∧ 𝑦 ∈ ((Base‘𝐶) × (Base‘𝐶)))) → ((1st𝑥)(Hom ‘𝐶)(2nd𝑥)) = ((1st𝑥)(Hom ‘𝐷)(2nd𝑥)))
21 df-ov 6607 . . . . . . . . 9 ((1st𝑥)(Hom ‘𝐶)(2nd𝑥)) = ((Hom ‘𝐶)‘⟨(1st𝑥), (2nd𝑥)⟩)
22 df-ov 6607 . . . . . . . . 9 ((1st𝑥)(Hom ‘𝐷)(2nd𝑥)) = ((Hom ‘𝐷)‘⟨(1st𝑥), (2nd𝑥)⟩)
2320, 21, 223eqtr3g 2678 . . . . . . . 8 ((𝜑 ∧ (𝑥 ∈ ((Base‘𝐶) × (Base‘𝐶)) ∧ 𝑦 ∈ ((Base‘𝐶) × (Base‘𝐶)))) → ((Hom ‘𝐶)‘⟨(1st𝑥), (2nd𝑥)⟩) = ((Hom ‘𝐷)‘⟨(1st𝑥), (2nd𝑥)⟩))
24 1st2nd2 7150 . . . . . . . . . 10 (𝑥 ∈ ((Base‘𝐶) × (Base‘𝐶)) → 𝑥 = ⟨(1st𝑥), (2nd𝑥)⟩)
2524ad2antrl 763 . . . . . . . . 9 ((𝜑 ∧ (𝑥 ∈ ((Base‘𝐶) × (Base‘𝐶)) ∧ 𝑦 ∈ ((Base‘𝐶) × (Base‘𝐶)))) → 𝑥 = ⟨(1st𝑥), (2nd𝑥)⟩)
2625fveq2d 6152 . . . . . . . 8 ((𝜑 ∧ (𝑥 ∈ ((Base‘𝐶) × (Base‘𝐶)) ∧ 𝑦 ∈ ((Base‘𝐶) × (Base‘𝐶)))) → ((Hom ‘𝐶)‘𝑥) = ((Hom ‘𝐶)‘⟨(1st𝑥), (2nd𝑥)⟩))
2725fveq2d 6152 . . . . . . . 8 ((𝜑 ∧ (𝑥 ∈ ((Base‘𝐶) × (Base‘𝐶)) ∧ 𝑦 ∈ ((Base‘𝐶) × (Base‘𝐶)))) → ((Hom ‘𝐷)‘𝑥) = ((Hom ‘𝐷)‘⟨(1st𝑥), (2nd𝑥)⟩))
2823, 26, 273eqtr4d 2665 . . . . . . 7 ((𝜑 ∧ (𝑥 ∈ ((Base‘𝐶) × (Base‘𝐶)) ∧ 𝑦 ∈ ((Base‘𝐶) × (Base‘𝐶)))) → ((Hom ‘𝐶)‘𝑥) = ((Hom ‘𝐷)‘𝑥))
2928adantr 481 . . . . . 6 (((𝜑 ∧ (𝑥 ∈ ((Base‘𝐶) × (Base‘𝐶)) ∧ 𝑦 ∈ ((Base‘𝐶) × (Base‘𝐶)))) ∧ (𝑓 ∈ ((1st𝑦)(Hom ‘𝐶)(1st𝑥)) ∧ 𝑔 ∈ ((2nd𝑥)(Hom ‘𝐶)(2nd𝑦)))) → ((Hom ‘𝐶)‘𝑥) = ((Hom ‘𝐷)‘𝑥))
30 eqid 2621 . . . . . . . 8 (comp‘𝐶) = (comp‘𝐶)
31 eqid 2621 . . . . . . . 8 (comp‘𝐷) = (comp‘𝐷)
328ad2antrr 761 . . . . . . . 8 ((((𝜑 ∧ (𝑥 ∈ ((Base‘𝐶) × (Base‘𝐶)) ∧ 𝑦 ∈ ((Base‘𝐶) × (Base‘𝐶)))) ∧ (𝑓 ∈ ((1st𝑦)(Hom ‘𝐶)(1st𝑥)) ∧ 𝑔 ∈ ((2nd𝑥)(Hom ‘𝐶)(2nd𝑦)))) ∧ ∈ ((Hom ‘𝐶)‘𝑥)) → (Homf𝐶) = (Homf𝐷))
33 hofpropd.2 . . . . . . . . 9 (𝜑 → (compf𝐶) = (compf𝐷))
3433ad3antrrr 765 . . . . . . . 8 ((((𝜑 ∧ (𝑥 ∈ ((Base‘𝐶) × (Base‘𝐶)) ∧ 𝑦 ∈ ((Base‘𝐶) × (Base‘𝐶)))) ∧ (𝑓 ∈ ((1st𝑦)(Hom ‘𝐶)(1st𝑥)) ∧ 𝑔 ∈ ((2nd𝑥)(Hom ‘𝐶)(2nd𝑦)))) ∧ ∈ ((Hom ‘𝐶)‘𝑥)) → (compf𝐶) = (compf𝐷))
3510ad2antrr 761 . . . . . . . 8 ((((𝜑 ∧ (𝑥 ∈ ((Base‘𝐶) × (Base‘𝐶)) ∧ 𝑦 ∈ ((Base‘𝐶) × (Base‘𝐶)))) ∧ (𝑓 ∈ ((1st𝑦)(Hom ‘𝐶)(1st𝑥)) ∧ 𝑔 ∈ ((2nd𝑥)(Hom ‘𝐶)(2nd𝑦)))) ∧ ∈ ((Hom ‘𝐶)‘𝑥)) → (1st𝑦) ∈ (Base‘𝐶))
3612ad2antrr 761 . . . . . . . 8 ((((𝜑 ∧ (𝑥 ∈ ((Base‘𝐶) × (Base‘𝐶)) ∧ 𝑦 ∈ ((Base‘𝐶) × (Base‘𝐶)))) ∧ (𝑓 ∈ ((1st𝑦)(Hom ‘𝐶)(1st𝑥)) ∧ 𝑔 ∈ ((2nd𝑥)(Hom ‘𝐶)(2nd𝑦)))) ∧ ∈ ((Hom ‘𝐶)‘𝑥)) → (1st𝑥) ∈ (Base‘𝐶))
3717ad2antrr 761 . . . . . . . 8 ((((𝜑 ∧ (𝑥 ∈ ((Base‘𝐶) × (Base‘𝐶)) ∧ 𝑦 ∈ ((Base‘𝐶) × (Base‘𝐶)))) ∧ (𝑓 ∈ ((1st𝑦)(Hom ‘𝐶)(1st𝑥)) ∧ 𝑔 ∈ ((2nd𝑥)(Hom ‘𝐶)(2nd𝑦)))) ∧ ∈ ((Hom ‘𝐶)‘𝑥)) → (2nd𝑦) ∈ (Base‘𝐶))
38 simplrl 799 . . . . . . . 8 ((((𝜑 ∧ (𝑥 ∈ ((Base‘𝐶) × (Base‘𝐶)) ∧ 𝑦 ∈ ((Base‘𝐶) × (Base‘𝐶)))) ∧ (𝑓 ∈ ((1st𝑦)(Hom ‘𝐶)(1st𝑥)) ∧ 𝑔 ∈ ((2nd𝑥)(Hom ‘𝐶)(2nd𝑦)))) ∧ ∈ ((Hom ‘𝐶)‘𝑥)) → 𝑓 ∈ ((1st𝑦)(Hom ‘𝐶)(1st𝑥)))
3925ad2antrr 761 . . . . . . . . . . 11 ((((𝜑 ∧ (𝑥 ∈ ((Base‘𝐶) × (Base‘𝐶)) ∧ 𝑦 ∈ ((Base‘𝐶) × (Base‘𝐶)))) ∧ (𝑓 ∈ ((1st𝑦)(Hom ‘𝐶)(1st𝑥)) ∧ 𝑔 ∈ ((2nd𝑥)(Hom ‘𝐶)(2nd𝑦)))) ∧ ∈ ((Hom ‘𝐶)‘𝑥)) → 𝑥 = ⟨(1st𝑥), (2nd𝑥)⟩)
4039oveq1d 6619 . . . . . . . . . 10 ((((𝜑 ∧ (𝑥 ∈ ((Base‘𝐶) × (Base‘𝐶)) ∧ 𝑦 ∈ ((Base‘𝐶) × (Base‘𝐶)))) ∧ (𝑓 ∈ ((1st𝑦)(Hom ‘𝐶)(1st𝑥)) ∧ 𝑔 ∈ ((2nd𝑥)(Hom ‘𝐶)(2nd𝑦)))) ∧ ∈ ((Hom ‘𝐶)‘𝑥)) → (𝑥(comp‘𝐶)(2nd𝑦)) = (⟨(1st𝑥), (2nd𝑥)⟩(comp‘𝐶)(2nd𝑦)))
4140oveqd 6621 . . . . . . . . 9 ((((𝜑 ∧ (𝑥 ∈ ((Base‘𝐶) × (Base‘𝐶)) ∧ 𝑦 ∈ ((Base‘𝐶) × (Base‘𝐶)))) ∧ (𝑓 ∈ ((1st𝑦)(Hom ‘𝐶)(1st𝑥)) ∧ 𝑔 ∈ ((2nd𝑥)(Hom ‘𝐶)(2nd𝑦)))) ∧ ∈ ((Hom ‘𝐶)‘𝑥)) → (𝑔(𝑥(comp‘𝐶)(2nd𝑦))) = (𝑔(⟨(1st𝑥), (2nd𝑥)⟩(comp‘𝐶)(2nd𝑦))))
42 hofpropd.c . . . . . . . . . . 11 (𝜑𝐶 ∈ Cat)
4342ad3antrrr 765 . . . . . . . . . 10 ((((𝜑 ∧ (𝑥 ∈ ((Base‘𝐶) × (Base‘𝐶)) ∧ 𝑦 ∈ ((Base‘𝐶) × (Base‘𝐶)))) ∧ (𝑓 ∈ ((1st𝑦)(Hom ‘𝐶)(1st𝑥)) ∧ 𝑔 ∈ ((2nd𝑥)(Hom ‘𝐶)(2nd𝑦)))) ∧ ∈ ((Hom ‘𝐶)‘𝑥)) → 𝐶 ∈ Cat)
4415ad2antrr 761 . . . . . . . . . 10 ((((𝜑 ∧ (𝑥 ∈ ((Base‘𝐶) × (Base‘𝐶)) ∧ 𝑦 ∈ ((Base‘𝐶) × (Base‘𝐶)))) ∧ (𝑓 ∈ ((1st𝑦)(Hom ‘𝐶)(1st𝑥)) ∧ 𝑔 ∈ ((2nd𝑥)(Hom ‘𝐶)(2nd𝑦)))) ∧ ∈ ((Hom ‘𝐶)‘𝑥)) → (2nd𝑥) ∈ (Base‘𝐶))
4526adantr 481 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑥 ∈ ((Base‘𝐶) × (Base‘𝐶)) ∧ 𝑦 ∈ ((Base‘𝐶) × (Base‘𝐶)))) ∧ (𝑓 ∈ ((1st𝑦)(Hom ‘𝐶)(1st𝑥)) ∧ 𝑔 ∈ ((2nd𝑥)(Hom ‘𝐶)(2nd𝑦)))) → ((Hom ‘𝐶)‘𝑥) = ((Hom ‘𝐶)‘⟨(1st𝑥), (2nd𝑥)⟩))
4645, 21syl6eqr 2673 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑥 ∈ ((Base‘𝐶) × (Base‘𝐶)) ∧ 𝑦 ∈ ((Base‘𝐶) × (Base‘𝐶)))) ∧ (𝑓 ∈ ((1st𝑦)(Hom ‘𝐶)(1st𝑥)) ∧ 𝑔 ∈ ((2nd𝑥)(Hom ‘𝐶)(2nd𝑦)))) → ((Hom ‘𝐶)‘𝑥) = ((1st𝑥)(Hom ‘𝐶)(2nd𝑥)))
4746eleq2d 2684 . . . . . . . . . . 11 (((𝜑 ∧ (𝑥 ∈ ((Base‘𝐶) × (Base‘𝐶)) ∧ 𝑦 ∈ ((Base‘𝐶) × (Base‘𝐶)))) ∧ (𝑓 ∈ ((1st𝑦)(Hom ‘𝐶)(1st𝑥)) ∧ 𝑔 ∈ ((2nd𝑥)(Hom ‘𝐶)(2nd𝑦)))) → ( ∈ ((Hom ‘𝐶)‘𝑥) ↔ ∈ ((1st𝑥)(Hom ‘𝐶)(2nd𝑥))))
4847biimpa 501 . . . . . . . . . 10 ((((𝜑 ∧ (𝑥 ∈ ((Base‘𝐶) × (Base‘𝐶)) ∧ 𝑦 ∈ ((Base‘𝐶) × (Base‘𝐶)))) ∧ (𝑓 ∈ ((1st𝑦)(Hom ‘𝐶)(1st𝑥)) ∧ 𝑔 ∈ ((2nd𝑥)(Hom ‘𝐶)(2nd𝑦)))) ∧ ∈ ((Hom ‘𝐶)‘𝑥)) → ∈ ((1st𝑥)(Hom ‘𝐶)(2nd𝑥)))
49 simplrr 800 . . . . . . . . . 10 ((((𝜑 ∧ (𝑥 ∈ ((Base‘𝐶) × (Base‘𝐶)) ∧ 𝑦 ∈ ((Base‘𝐶) × (Base‘𝐶)))) ∧ (𝑓 ∈ ((1st𝑦)(Hom ‘𝐶)(1st𝑥)) ∧ 𝑔 ∈ ((2nd𝑥)(Hom ‘𝐶)(2nd𝑦)))) ∧ ∈ ((Hom ‘𝐶)‘𝑥)) → 𝑔 ∈ ((2nd𝑥)(Hom ‘𝐶)(2nd𝑦)))
505, 6, 30, 43, 36, 44, 37, 48, 49catcocl 16267 . . . . . . . . 9 ((((𝜑 ∧ (𝑥 ∈ ((Base‘𝐶) × (Base‘𝐶)) ∧ 𝑦 ∈ ((Base‘𝐶) × (Base‘𝐶)))) ∧ (𝑓 ∈ ((1st𝑦)(Hom ‘𝐶)(1st𝑥)) ∧ 𝑔 ∈ ((2nd𝑥)(Hom ‘𝐶)(2nd𝑦)))) ∧ ∈ ((Hom ‘𝐶)‘𝑥)) → (𝑔(⟨(1st𝑥), (2nd𝑥)⟩(comp‘𝐶)(2nd𝑦))) ∈ ((1st𝑥)(Hom ‘𝐶)(2nd𝑦)))
5141, 50eqeltrd 2698 . . . . . . . 8 ((((𝜑 ∧ (𝑥 ∈ ((Base‘𝐶) × (Base‘𝐶)) ∧ 𝑦 ∈ ((Base‘𝐶) × (Base‘𝐶)))) ∧ (𝑓 ∈ ((1st𝑦)(Hom ‘𝐶)(1st𝑥)) ∧ 𝑔 ∈ ((2nd𝑥)(Hom ‘𝐶)(2nd𝑦)))) ∧ ∈ ((Hom ‘𝐶)‘𝑥)) → (𝑔(𝑥(comp‘𝐶)(2nd𝑦))) ∈ ((1st𝑥)(Hom ‘𝐶)(2nd𝑦)))
525, 6, 30, 31, 32, 34, 35, 36, 37, 38, 51comfeqval 16289 . . . . . . 7 ((((𝜑 ∧ (𝑥 ∈ ((Base‘𝐶) × (Base‘𝐶)) ∧ 𝑦 ∈ ((Base‘𝐶) × (Base‘𝐶)))) ∧ (𝑓 ∈ ((1st𝑦)(Hom ‘𝐶)(1st𝑥)) ∧ 𝑔 ∈ ((2nd𝑥)(Hom ‘𝐶)(2nd𝑦)))) ∧ ∈ ((Hom ‘𝐶)‘𝑥)) → ((𝑔(𝑥(comp‘𝐶)(2nd𝑦)))(⟨(1st𝑦), (1st𝑥)⟩(comp‘𝐶)(2nd𝑦))𝑓) = ((𝑔(𝑥(comp‘𝐶)(2nd𝑦)))(⟨(1st𝑦), (1st𝑥)⟩(comp‘𝐷)(2nd𝑦))𝑓))
535, 6, 30, 31, 32, 34, 36, 44, 37, 48, 49comfeqval 16289 . . . . . . . . 9 ((((𝜑 ∧ (𝑥 ∈ ((Base‘𝐶) × (Base‘𝐶)) ∧ 𝑦 ∈ ((Base‘𝐶) × (Base‘𝐶)))) ∧ (𝑓 ∈ ((1st𝑦)(Hom ‘𝐶)(1st𝑥)) ∧ 𝑔 ∈ ((2nd𝑥)(Hom ‘𝐶)(2nd𝑦)))) ∧ ∈ ((Hom ‘𝐶)‘𝑥)) → (𝑔(⟨(1st𝑥), (2nd𝑥)⟩(comp‘𝐶)(2nd𝑦))) = (𝑔(⟨(1st𝑥), (2nd𝑥)⟩(comp‘𝐷)(2nd𝑦))))
5439oveq1d 6619 . . . . . . . . . 10 ((((𝜑 ∧ (𝑥 ∈ ((Base‘𝐶) × (Base‘𝐶)) ∧ 𝑦 ∈ ((Base‘𝐶) × (Base‘𝐶)))) ∧ (𝑓 ∈ ((1st𝑦)(Hom ‘𝐶)(1st𝑥)) ∧ 𝑔 ∈ ((2nd𝑥)(Hom ‘𝐶)(2nd𝑦)))) ∧ ∈ ((Hom ‘𝐶)‘𝑥)) → (𝑥(comp‘𝐷)(2nd𝑦)) = (⟨(1st𝑥), (2nd𝑥)⟩(comp‘𝐷)(2nd𝑦)))
5554oveqd 6621 . . . . . . . . 9 ((((𝜑 ∧ (𝑥 ∈ ((Base‘𝐶) × (Base‘𝐶)) ∧ 𝑦 ∈ ((Base‘𝐶) × (Base‘𝐶)))) ∧ (𝑓 ∈ ((1st𝑦)(Hom ‘𝐶)(1st𝑥)) ∧ 𝑔 ∈ ((2nd𝑥)(Hom ‘𝐶)(2nd𝑦)))) ∧ ∈ ((Hom ‘𝐶)‘𝑥)) → (𝑔(𝑥(comp‘𝐷)(2nd𝑦))) = (𝑔(⟨(1st𝑥), (2nd𝑥)⟩(comp‘𝐷)(2nd𝑦))))
5653, 41, 553eqtr4d 2665 . . . . . . . 8 ((((𝜑 ∧ (𝑥 ∈ ((Base‘𝐶) × (Base‘𝐶)) ∧ 𝑦 ∈ ((Base‘𝐶) × (Base‘𝐶)))) ∧ (𝑓 ∈ ((1st𝑦)(Hom ‘𝐶)(1st𝑥)) ∧ 𝑔 ∈ ((2nd𝑥)(Hom ‘𝐶)(2nd𝑦)))) ∧ ∈ ((Hom ‘𝐶)‘𝑥)) → (𝑔(𝑥(comp‘𝐶)(2nd𝑦))) = (𝑔(𝑥(comp‘𝐷)(2nd𝑦))))
5756oveq1d 6619 . . . . . . 7 ((((𝜑 ∧ (𝑥 ∈ ((Base‘𝐶) × (Base‘𝐶)) ∧ 𝑦 ∈ ((Base‘𝐶) × (Base‘𝐶)))) ∧ (𝑓 ∈ ((1st𝑦)(Hom ‘𝐶)(1st𝑥)) ∧ 𝑔 ∈ ((2nd𝑥)(Hom ‘𝐶)(2nd𝑦)))) ∧ ∈ ((Hom ‘𝐶)‘𝑥)) → ((𝑔(𝑥(comp‘𝐶)(2nd𝑦)))(⟨(1st𝑦), (1st𝑥)⟩(comp‘𝐷)(2nd𝑦))𝑓) = ((𝑔(𝑥(comp‘𝐷)(2nd𝑦)))(⟨(1st𝑦), (1st𝑥)⟩(comp‘𝐷)(2nd𝑦))𝑓))
5852, 57eqtrd 2655 . . . . . 6 ((((𝜑 ∧ (𝑥 ∈ ((Base‘𝐶) × (Base‘𝐶)) ∧ 𝑦 ∈ ((Base‘𝐶) × (Base‘𝐶)))) ∧ (𝑓 ∈ ((1st𝑦)(Hom ‘𝐶)(1st𝑥)) ∧ 𝑔 ∈ ((2nd𝑥)(Hom ‘𝐶)(2nd𝑦)))) ∧ ∈ ((Hom ‘𝐶)‘𝑥)) → ((𝑔(𝑥(comp‘𝐶)(2nd𝑦)))(⟨(1st𝑦), (1st𝑥)⟩(comp‘𝐶)(2nd𝑦))𝑓) = ((𝑔(𝑥(comp‘𝐷)(2nd𝑦)))(⟨(1st𝑦), (1st𝑥)⟩(comp‘𝐷)(2nd𝑦))𝑓))
5929, 58mpteq12dva 4692 . . . . 5 (((𝜑 ∧ (𝑥 ∈ ((Base‘𝐶) × (Base‘𝐶)) ∧ 𝑦 ∈ ((Base‘𝐶) × (Base‘𝐶)))) ∧ (𝑓 ∈ ((1st𝑦)(Hom ‘𝐶)(1st𝑥)) ∧ 𝑔 ∈ ((2nd𝑥)(Hom ‘𝐶)(2nd𝑦)))) → ( ∈ ((Hom ‘𝐶)‘𝑥) ↦ ((𝑔(𝑥(comp‘𝐶)(2nd𝑦)))(⟨(1st𝑦), (1st𝑥)⟩(comp‘𝐶)(2nd𝑦))𝑓)) = ( ∈ ((Hom ‘𝐷)‘𝑥) ↦ ((𝑔(𝑥(comp‘𝐷)(2nd𝑦)))(⟨(1st𝑦), (1st𝑥)⟩(comp‘𝐷)(2nd𝑦))𝑓)))
6013, 19, 59mpt2eq123dva 6669 . . . 4 ((𝜑 ∧ (𝑥 ∈ ((Base‘𝐶) × (Base‘𝐶)) ∧ 𝑦 ∈ ((Base‘𝐶) × (Base‘𝐶)))) → (𝑓 ∈ ((1st𝑦)(Hom ‘𝐶)(1st𝑥)), 𝑔 ∈ ((2nd𝑥)(Hom ‘𝐶)(2nd𝑦)) ↦ ( ∈ ((Hom ‘𝐶)‘𝑥) ↦ ((𝑔(𝑥(comp‘𝐶)(2nd𝑦)))(⟨(1st𝑦), (1st𝑥)⟩(comp‘𝐶)(2nd𝑦))𝑓))) = (𝑓 ∈ ((1st𝑦)(Hom ‘𝐷)(1st𝑥)), 𝑔 ∈ ((2nd𝑥)(Hom ‘𝐷)(2nd𝑦)) ↦ ( ∈ ((Hom ‘𝐷)‘𝑥) ↦ ((𝑔(𝑥(comp‘𝐷)(2nd𝑦)))(⟨(1st𝑦), (1st𝑥)⟩(comp‘𝐷)(2nd𝑦))𝑓))))
613, 4, 60mpt2eq123dva 6669 . . 3 (𝜑 → (𝑥 ∈ ((Base‘𝐶) × (Base‘𝐶)), 𝑦 ∈ ((Base‘𝐶) × (Base‘𝐶)) ↦ (𝑓 ∈ ((1st𝑦)(Hom ‘𝐶)(1st𝑥)), 𝑔 ∈ ((2nd𝑥)(Hom ‘𝐶)(2nd𝑦)) ↦ ( ∈ ((Hom ‘𝐶)‘𝑥) ↦ ((𝑔(𝑥(comp‘𝐶)(2nd𝑦)))(⟨(1st𝑦), (1st𝑥)⟩(comp‘𝐶)(2nd𝑦))𝑓)))) = (𝑥 ∈ ((Base‘𝐷) × (Base‘𝐷)), 𝑦 ∈ ((Base‘𝐷) × (Base‘𝐷)) ↦ (𝑓 ∈ ((1st𝑦)(Hom ‘𝐷)(1st𝑥)), 𝑔 ∈ ((2nd𝑥)(Hom ‘𝐷)(2nd𝑦)) ↦ ( ∈ ((Hom ‘𝐷)‘𝑥) ↦ ((𝑔(𝑥(comp‘𝐷)(2nd𝑦)))(⟨(1st𝑦), (1st𝑥)⟩(comp‘𝐷)(2nd𝑦))𝑓)))))
621, 61opeq12d 4378 . 2 (𝜑 → ⟨(Homf𝐶), (𝑥 ∈ ((Base‘𝐶) × (Base‘𝐶)), 𝑦 ∈ ((Base‘𝐶) × (Base‘𝐶)) ↦ (𝑓 ∈ ((1st𝑦)(Hom ‘𝐶)(1st𝑥)), 𝑔 ∈ ((2nd𝑥)(Hom ‘𝐶)(2nd𝑦)) ↦ ( ∈ ((Hom ‘𝐶)‘𝑥) ↦ ((𝑔(𝑥(comp‘𝐶)(2nd𝑦)))(⟨(1st𝑦), (1st𝑥)⟩(comp‘𝐶)(2nd𝑦))𝑓))))⟩ = ⟨(Homf𝐷), (𝑥 ∈ ((Base‘𝐷) × (Base‘𝐷)), 𝑦 ∈ ((Base‘𝐷) × (Base‘𝐷)) ↦ (𝑓 ∈ ((1st𝑦)(Hom ‘𝐷)(1st𝑥)), 𝑔 ∈ ((2nd𝑥)(Hom ‘𝐷)(2nd𝑦)) ↦ ( ∈ ((Hom ‘𝐷)‘𝑥) ↦ ((𝑔(𝑥(comp‘𝐷)(2nd𝑦)))(⟨(1st𝑦), (1st𝑥)⟩(comp‘𝐷)(2nd𝑦))𝑓))))⟩)
63 eqid 2621 . . 3 (HomF𝐶) = (HomF𝐶)
6463, 42, 5, 6, 30hofval 16813 . 2 (𝜑 → (HomF𝐶) = ⟨(Homf𝐶), (𝑥 ∈ ((Base‘𝐶) × (Base‘𝐶)), 𝑦 ∈ ((Base‘𝐶) × (Base‘𝐶)) ↦ (𝑓 ∈ ((1st𝑦)(Hom ‘𝐶)(1st𝑥)), 𝑔 ∈ ((2nd𝑥)(Hom ‘𝐶)(2nd𝑦)) ↦ ( ∈ ((Hom ‘𝐶)‘𝑥) ↦ ((𝑔(𝑥(comp‘𝐶)(2nd𝑦)))(⟨(1st𝑦), (1st𝑥)⟩(comp‘𝐶)(2nd𝑦))𝑓))))⟩)
65 eqid 2621 . . 3 (HomF𝐷) = (HomF𝐷)
66 hofpropd.d . . 3 (𝜑𝐷 ∈ Cat)
67 eqid 2621 . . 3 (Base‘𝐷) = (Base‘𝐷)
6865, 66, 67, 7, 31hofval 16813 . 2 (𝜑 → (HomF𝐷) = ⟨(Homf𝐷), (𝑥 ∈ ((Base‘𝐷) × (Base‘𝐷)), 𝑦 ∈ ((Base‘𝐷) × (Base‘𝐷)) ↦ (𝑓 ∈ ((1st𝑦)(Hom ‘𝐷)(1st𝑥)), 𝑔 ∈ ((2nd𝑥)(Hom ‘𝐷)(2nd𝑦)) ↦ ( ∈ ((Hom ‘𝐷)‘𝑥) ↦ ((𝑔(𝑥(comp‘𝐷)(2nd𝑦)))(⟨(1st𝑦), (1st𝑥)⟩(comp‘𝐷)(2nd𝑦))𝑓))))⟩)
6962, 64, 683eqtr4d 2665 1 (𝜑 → (HomF𝐶) = (HomF𝐷))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 384   = wceq 1480  wcel 1987  cop 4154  cmpt 4673   × cxp 5072  cfv 5847  (class class class)co 6604  cmpt2 6606  1st c1st 7111  2nd c2nd 7112  Basecbs 15781  Hom chom 15873  compcco 15874  Catccat 16246  Homf chomf 16248  compfccomf 16249  HomFchof 16809
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-8 1989  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601  ax-rep 4731  ax-sep 4741  ax-nul 4749  ax-pow 4803  ax-pr 4867  ax-un 6902
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1038  df-tru 1483  df-ex 1702  df-nf 1707  df-sb 1878  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-ne 2791  df-ral 2912  df-rex 2913  df-reu 2914  df-rab 2916  df-v 3188  df-sbc 3418  df-csb 3515  df-dif 3558  df-un 3560  df-in 3562  df-ss 3569  df-nul 3892  df-if 4059  df-pw 4132  df-sn 4149  df-pr 4151  df-op 4155  df-uni 4403  df-iun 4487  df-br 4614  df-opab 4674  df-mpt 4675  df-id 4989  df-xp 5080  df-rel 5081  df-cnv 5082  df-co 5083  df-dm 5084  df-rn 5085  df-res 5086  df-ima 5087  df-iota 5810  df-fun 5849  df-fn 5850  df-f 5851  df-f1 5852  df-fo 5853  df-f1o 5854  df-fv 5855  df-ov 6607  df-oprab 6608  df-mpt2 6609  df-1st 7113  df-2nd 7114  df-cat 16250  df-homf 16252  df-comf 16253  df-hof 16811
This theorem is referenced by:  yonpropd  16829  oppcyon  16830
  Copyright terms: Public domain W3C validator