MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  hofval Structured version   Visualization version   GIF version

Theorem hofval 17490
Description: Value of the Hom functor, which is a bifunctor (a functor of two arguments), contravariant in the first argument and covariant in the second, from (oppCat‘𝐶) × 𝐶 to SetCat, whose object part is the hom-function Hom, and with morphism part given by pre- and post-composition. (Contributed by Mario Carneiro, 15-Jan-2017.)
Hypotheses
Ref Expression
hofval.m 𝑀 = (HomF𝐶)
hofval.c (𝜑𝐶 ∈ Cat)
hofval.b 𝐵 = (Base‘𝐶)
hofval.h 𝐻 = (Hom ‘𝐶)
hofval.o · = (comp‘𝐶)
Assertion
Ref Expression
hofval (𝜑𝑀 = ⟨(Homf𝐶), (𝑥 ∈ (𝐵 × 𝐵), 𝑦 ∈ (𝐵 × 𝐵) ↦ (𝑓 ∈ ((1st𝑦)𝐻(1st𝑥)), 𝑔 ∈ ((2nd𝑥)𝐻(2nd𝑦)) ↦ ( ∈ (𝐻𝑥) ↦ ((𝑔(𝑥 · (2nd𝑦)))(⟨(1st𝑦), (1st𝑥)⟩ · (2nd𝑦))𝑓))))⟩)
Distinct variable groups:   𝑓,𝑔,,𝑥,𝑦,𝐵   𝜑,𝑓,𝑔,,𝑥,𝑦   𝐶,𝑓,𝑔,,𝑥,𝑦   𝑓,𝐻,𝑔,,𝑥,𝑦   · ,𝑓,𝑔,,𝑥,𝑦
Allowed substitution hints:   𝑀(𝑥,𝑦,𝑓,𝑔,)

Proof of Theorem hofval
Dummy variables 𝑏 𝑐 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 hofval.m . 2 𝑀 = (HomF𝐶)
2 df-hof 17488 . . 3 HomF = (𝑐 ∈ Cat ↦ ⟨(Homf𝑐), (Base‘𝑐) / 𝑏(𝑥 ∈ (𝑏 × 𝑏), 𝑦 ∈ (𝑏 × 𝑏) ↦ (𝑓 ∈ ((1st𝑦)(Hom ‘𝑐)(1st𝑥)), 𝑔 ∈ ((2nd𝑥)(Hom ‘𝑐)(2nd𝑦)) ↦ ( ∈ ((Hom ‘𝑐)‘𝑥) ↦ ((𝑔(𝑥(comp‘𝑐)(2nd𝑦)))(⟨(1st𝑦), (1st𝑥)⟩(comp‘𝑐)(2nd𝑦))𝑓))))⟩)
3 simpr 485 . . . . 5 ((𝜑𝑐 = 𝐶) → 𝑐 = 𝐶)
43fveq2d 6667 . . . 4 ((𝜑𝑐 = 𝐶) → (Homf𝑐) = (Homf𝐶))
5 fvexd 6678 . . . . 5 ((𝜑𝑐 = 𝐶) → (Base‘𝑐) ∈ V)
63fveq2d 6667 . . . . . 6 ((𝜑𝑐 = 𝐶) → (Base‘𝑐) = (Base‘𝐶))
7 hofval.b . . . . . 6 𝐵 = (Base‘𝐶)
86, 7syl6eqr 2871 . . . . 5 ((𝜑𝑐 = 𝐶) → (Base‘𝑐) = 𝐵)
9 simpr 485 . . . . . . 7 (((𝜑𝑐 = 𝐶) ∧ 𝑏 = 𝐵) → 𝑏 = 𝐵)
109sqxpeqd 5580 . . . . . 6 (((𝜑𝑐 = 𝐶) ∧ 𝑏 = 𝐵) → (𝑏 × 𝑏) = (𝐵 × 𝐵))
11 simplr 765 . . . . . . . . . 10 (((𝜑𝑐 = 𝐶) ∧ 𝑏 = 𝐵) → 𝑐 = 𝐶)
1211fveq2d 6667 . . . . . . . . 9 (((𝜑𝑐 = 𝐶) ∧ 𝑏 = 𝐵) → (Hom ‘𝑐) = (Hom ‘𝐶))
13 hofval.h . . . . . . . . 9 𝐻 = (Hom ‘𝐶)
1412, 13syl6eqr 2871 . . . . . . . 8 (((𝜑𝑐 = 𝐶) ∧ 𝑏 = 𝐵) → (Hom ‘𝑐) = 𝐻)
1514oveqd 7162 . . . . . . 7 (((𝜑𝑐 = 𝐶) ∧ 𝑏 = 𝐵) → ((1st𝑦)(Hom ‘𝑐)(1st𝑥)) = ((1st𝑦)𝐻(1st𝑥)))
1614oveqd 7162 . . . . . . 7 (((𝜑𝑐 = 𝐶) ∧ 𝑏 = 𝐵) → ((2nd𝑥)(Hom ‘𝑐)(2nd𝑦)) = ((2nd𝑥)𝐻(2nd𝑦)))
1714fveq1d 6665 . . . . . . . 8 (((𝜑𝑐 = 𝐶) ∧ 𝑏 = 𝐵) → ((Hom ‘𝑐)‘𝑥) = (𝐻𝑥))
1811fveq2d 6667 . . . . . . . . . . 11 (((𝜑𝑐 = 𝐶) ∧ 𝑏 = 𝐵) → (comp‘𝑐) = (comp‘𝐶))
19 hofval.o . . . . . . . . . . 11 · = (comp‘𝐶)
2018, 19syl6eqr 2871 . . . . . . . . . 10 (((𝜑𝑐 = 𝐶) ∧ 𝑏 = 𝐵) → (comp‘𝑐) = · )
2120oveqd 7162 . . . . . . . . 9 (((𝜑𝑐 = 𝐶) ∧ 𝑏 = 𝐵) → (⟨(1st𝑦), (1st𝑥)⟩(comp‘𝑐)(2nd𝑦)) = (⟨(1st𝑦), (1st𝑥)⟩ · (2nd𝑦)))
2220oveqd 7162 . . . . . . . . . 10 (((𝜑𝑐 = 𝐶) ∧ 𝑏 = 𝐵) → (𝑥(comp‘𝑐)(2nd𝑦)) = (𝑥 · (2nd𝑦)))
2322oveqd 7162 . . . . . . . . 9 (((𝜑𝑐 = 𝐶) ∧ 𝑏 = 𝐵) → (𝑔(𝑥(comp‘𝑐)(2nd𝑦))) = (𝑔(𝑥 · (2nd𝑦))))
24 eqidd 2819 . . . . . . . . 9 (((𝜑𝑐 = 𝐶) ∧ 𝑏 = 𝐵) → 𝑓 = 𝑓)
2521, 23, 24oveq123d 7166 . . . . . . . 8 (((𝜑𝑐 = 𝐶) ∧ 𝑏 = 𝐵) → ((𝑔(𝑥(comp‘𝑐)(2nd𝑦)))(⟨(1st𝑦), (1st𝑥)⟩(comp‘𝑐)(2nd𝑦))𝑓) = ((𝑔(𝑥 · (2nd𝑦)))(⟨(1st𝑦), (1st𝑥)⟩ · (2nd𝑦))𝑓))
2617, 25mpteq12dv 5142 . . . . . . 7 (((𝜑𝑐 = 𝐶) ∧ 𝑏 = 𝐵) → ( ∈ ((Hom ‘𝑐)‘𝑥) ↦ ((𝑔(𝑥(comp‘𝑐)(2nd𝑦)))(⟨(1st𝑦), (1st𝑥)⟩(comp‘𝑐)(2nd𝑦))𝑓)) = ( ∈ (𝐻𝑥) ↦ ((𝑔(𝑥 · (2nd𝑦)))(⟨(1st𝑦), (1st𝑥)⟩ · (2nd𝑦))𝑓)))
2715, 16, 26mpoeq123dv 7218 . . . . . 6 (((𝜑𝑐 = 𝐶) ∧ 𝑏 = 𝐵) → (𝑓 ∈ ((1st𝑦)(Hom ‘𝑐)(1st𝑥)), 𝑔 ∈ ((2nd𝑥)(Hom ‘𝑐)(2nd𝑦)) ↦ ( ∈ ((Hom ‘𝑐)‘𝑥) ↦ ((𝑔(𝑥(comp‘𝑐)(2nd𝑦)))(⟨(1st𝑦), (1st𝑥)⟩(comp‘𝑐)(2nd𝑦))𝑓))) = (𝑓 ∈ ((1st𝑦)𝐻(1st𝑥)), 𝑔 ∈ ((2nd𝑥)𝐻(2nd𝑦)) ↦ ( ∈ (𝐻𝑥) ↦ ((𝑔(𝑥 · (2nd𝑦)))(⟨(1st𝑦), (1st𝑥)⟩ · (2nd𝑦))𝑓))))
2810, 10, 27mpoeq123dv 7218 . . . . 5 (((𝜑𝑐 = 𝐶) ∧ 𝑏 = 𝐵) → (𝑥 ∈ (𝑏 × 𝑏), 𝑦 ∈ (𝑏 × 𝑏) ↦ (𝑓 ∈ ((1st𝑦)(Hom ‘𝑐)(1st𝑥)), 𝑔 ∈ ((2nd𝑥)(Hom ‘𝑐)(2nd𝑦)) ↦ ( ∈ ((Hom ‘𝑐)‘𝑥) ↦ ((𝑔(𝑥(comp‘𝑐)(2nd𝑦)))(⟨(1st𝑦), (1st𝑥)⟩(comp‘𝑐)(2nd𝑦))𝑓)))) = (𝑥 ∈ (𝐵 × 𝐵), 𝑦 ∈ (𝐵 × 𝐵) ↦ (𝑓 ∈ ((1st𝑦)𝐻(1st𝑥)), 𝑔 ∈ ((2nd𝑥)𝐻(2nd𝑦)) ↦ ( ∈ (𝐻𝑥) ↦ ((𝑔(𝑥 · (2nd𝑦)))(⟨(1st𝑦), (1st𝑥)⟩ · (2nd𝑦))𝑓)))))
295, 8, 28csbied2 3917 . . . 4 ((𝜑𝑐 = 𝐶) → (Base‘𝑐) / 𝑏(𝑥 ∈ (𝑏 × 𝑏), 𝑦 ∈ (𝑏 × 𝑏) ↦ (𝑓 ∈ ((1st𝑦)(Hom ‘𝑐)(1st𝑥)), 𝑔 ∈ ((2nd𝑥)(Hom ‘𝑐)(2nd𝑦)) ↦ ( ∈ ((Hom ‘𝑐)‘𝑥) ↦ ((𝑔(𝑥(comp‘𝑐)(2nd𝑦)))(⟨(1st𝑦), (1st𝑥)⟩(comp‘𝑐)(2nd𝑦))𝑓)))) = (𝑥 ∈ (𝐵 × 𝐵), 𝑦 ∈ (𝐵 × 𝐵) ↦ (𝑓 ∈ ((1st𝑦)𝐻(1st𝑥)), 𝑔 ∈ ((2nd𝑥)𝐻(2nd𝑦)) ↦ ( ∈ (𝐻𝑥) ↦ ((𝑔(𝑥 · (2nd𝑦)))(⟨(1st𝑦), (1st𝑥)⟩ · (2nd𝑦))𝑓)))))
304, 29opeq12d 4803 . . 3 ((𝜑𝑐 = 𝐶) → ⟨(Homf𝑐), (Base‘𝑐) / 𝑏(𝑥 ∈ (𝑏 × 𝑏), 𝑦 ∈ (𝑏 × 𝑏) ↦ (𝑓 ∈ ((1st𝑦)(Hom ‘𝑐)(1st𝑥)), 𝑔 ∈ ((2nd𝑥)(Hom ‘𝑐)(2nd𝑦)) ↦ ( ∈ ((Hom ‘𝑐)‘𝑥) ↦ ((𝑔(𝑥(comp‘𝑐)(2nd𝑦)))(⟨(1st𝑦), (1st𝑥)⟩(comp‘𝑐)(2nd𝑦))𝑓))))⟩ = ⟨(Homf𝐶), (𝑥 ∈ (𝐵 × 𝐵), 𝑦 ∈ (𝐵 × 𝐵) ↦ (𝑓 ∈ ((1st𝑦)𝐻(1st𝑥)), 𝑔 ∈ ((2nd𝑥)𝐻(2nd𝑦)) ↦ ( ∈ (𝐻𝑥) ↦ ((𝑔(𝑥 · (2nd𝑦)))(⟨(1st𝑦), (1st𝑥)⟩ · (2nd𝑦))𝑓))))⟩)
31 hofval.c . . 3 (𝜑𝐶 ∈ Cat)
32 opex 5347 . . . 4 ⟨(Homf𝐶), (𝑥 ∈ (𝐵 × 𝐵), 𝑦 ∈ (𝐵 × 𝐵) ↦ (𝑓 ∈ ((1st𝑦)𝐻(1st𝑥)), 𝑔 ∈ ((2nd𝑥)𝐻(2nd𝑦)) ↦ ( ∈ (𝐻𝑥) ↦ ((𝑔(𝑥 · (2nd𝑦)))(⟨(1st𝑦), (1st𝑥)⟩ · (2nd𝑦))𝑓))))⟩ ∈ V
3332a1i 11 . . 3 (𝜑 → ⟨(Homf𝐶), (𝑥 ∈ (𝐵 × 𝐵), 𝑦 ∈ (𝐵 × 𝐵) ↦ (𝑓 ∈ ((1st𝑦)𝐻(1st𝑥)), 𝑔 ∈ ((2nd𝑥)𝐻(2nd𝑦)) ↦ ( ∈ (𝐻𝑥) ↦ ((𝑔(𝑥 · (2nd𝑦)))(⟨(1st𝑦), (1st𝑥)⟩ · (2nd𝑦))𝑓))))⟩ ∈ V)
342, 30, 31, 33fvmptd2 6768 . 2 (𝜑 → (HomF𝐶) = ⟨(Homf𝐶), (𝑥 ∈ (𝐵 × 𝐵), 𝑦 ∈ (𝐵 × 𝐵) ↦ (𝑓 ∈ ((1st𝑦)𝐻(1st𝑥)), 𝑔 ∈ ((2nd𝑥)𝐻(2nd𝑦)) ↦ ( ∈ (𝐻𝑥) ↦ ((𝑔(𝑥 · (2nd𝑦)))(⟨(1st𝑦), (1st𝑥)⟩ · (2nd𝑦))𝑓))))⟩)
351, 34syl5eq 2865 1 (𝜑𝑀 = ⟨(Homf𝐶), (𝑥 ∈ (𝐵 × 𝐵), 𝑦 ∈ (𝐵 × 𝐵) ↦ (𝑓 ∈ ((1st𝑦)𝐻(1st𝑥)), 𝑔 ∈ ((2nd𝑥)𝐻(2nd𝑦)) ↦ ( ∈ (𝐻𝑥) ↦ ((𝑔(𝑥 · (2nd𝑦)))(⟨(1st𝑦), (1st𝑥)⟩ · (2nd𝑦))𝑓))))⟩)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396   = wceq 1528  wcel 2105  Vcvv 3492  csb 3880  cop 4563  cmpt 5137   × cxp 5546  cfv 6348  (class class class)co 7145  cmpo 7147  1st c1st 7676  2nd c2nd 7677  Basecbs 16471  Hom chom 16564  compcco 16565  Catccat 16923  Homf chomf 16925  HomFchof 17486
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1787  ax-4 1801  ax-5 1902  ax-6 1961  ax-7 2006  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2151  ax-12 2167  ax-ext 2790  ax-sep 5194  ax-nul 5201  ax-pr 5320
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 842  df-3an 1081  df-tru 1531  df-ex 1772  df-nf 1776  df-sb 2061  df-mo 2615  df-eu 2647  df-clab 2797  df-cleq 2811  df-clel 2890  df-nfc 2960  df-ral 3140  df-rex 3141  df-rab 3144  df-v 3494  df-sbc 3770  df-csb 3881  df-dif 3936  df-un 3938  df-in 3940  df-ss 3949  df-nul 4289  df-if 4464  df-sn 4558  df-pr 4560  df-op 4564  df-uni 4831  df-br 5058  df-opab 5120  df-mpt 5138  df-id 5453  df-xp 5554  df-rel 5555  df-cnv 5556  df-co 5557  df-dm 5558  df-iota 6307  df-fun 6350  df-fv 6356  df-ov 7148  df-oprab 7149  df-mpo 7150  df-hof 17488
This theorem is referenced by:  hof1fval  17491  hof2fval  17493  hofcl  17497  hofpropd  17505
  Copyright terms: Public domain W3C validator