Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  hoicoto2 Structured version   Visualization version   GIF version

Theorem hoicoto2 42880
Description: The half-open interval expressed using a composition of a function into (ℝ × ℝ) and using two distinct real-valued functions for the borders. (Contributed by Glauco Siliprandi, 24-Dec-2020.)
Hypotheses
Ref Expression
hoicoto2.i (𝜑𝐼:𝑋⟶(ℝ × ℝ))
hoicoto2.a 𝐴 = (𝑘𝑋 ↦ (1st ‘(𝐼𝑘)))
hoicoto2.b 𝐵 = (𝑘𝑋 ↦ (2nd ‘(𝐼𝑘)))
Assertion
Ref Expression
hoicoto2 (𝜑X𝑘𝑋 (([,) ∘ 𝐼)‘𝑘) = X𝑘𝑋 ((𝐴𝑘)[,)(𝐵𝑘)))
Distinct variable groups:   𝑘,𝑋   𝜑,𝑘
Allowed substitution hints:   𝐴(𝑘)   𝐵(𝑘)   𝐼(𝑘)

Proof of Theorem hoicoto2
StepHypRef Expression
1 hoicoto2.i . . . . 5 (𝜑𝐼:𝑋⟶(ℝ × ℝ))
21adantr 483 . . . 4 ((𝜑𝑘𝑋) → 𝐼:𝑋⟶(ℝ × ℝ))
3 simpr 487 . . . 4 ((𝜑𝑘𝑋) → 𝑘𝑋)
42, 3fvovco 41447 . . 3 ((𝜑𝑘𝑋) → (([,) ∘ 𝐼)‘𝑘) = ((1st ‘(𝐼𝑘))[,)(2nd ‘(𝐼𝑘))))
51ffvelrnda 6846 . . . . . . . 8 ((𝜑𝑘𝑋) → (𝐼𝑘) ∈ (ℝ × ℝ))
6 xp1st 7715 . . . . . . . 8 ((𝐼𝑘) ∈ (ℝ × ℝ) → (1st ‘(𝐼𝑘)) ∈ ℝ)
75, 6syl 17 . . . . . . 7 ((𝜑𝑘𝑋) → (1st ‘(𝐼𝑘)) ∈ ℝ)
87elexd 3515 . . . . . 6 ((𝜑𝑘𝑋) → (1st ‘(𝐼𝑘)) ∈ V)
9 hoicoto2.a . . . . . . 7 𝐴 = (𝑘𝑋 ↦ (1st ‘(𝐼𝑘)))
109fvmpt2 6774 . . . . . 6 ((𝑘𝑋 ∧ (1st ‘(𝐼𝑘)) ∈ V) → (𝐴𝑘) = (1st ‘(𝐼𝑘)))
113, 8, 10syl2anc 586 . . . . 5 ((𝜑𝑘𝑋) → (𝐴𝑘) = (1st ‘(𝐼𝑘)))
1211eqcomd 2827 . . . 4 ((𝜑𝑘𝑋) → (1st ‘(𝐼𝑘)) = (𝐴𝑘))
13 xp2nd 7716 . . . . . . . 8 ((𝐼𝑘) ∈ (ℝ × ℝ) → (2nd ‘(𝐼𝑘)) ∈ ℝ)
145, 13syl 17 . . . . . . 7 ((𝜑𝑘𝑋) → (2nd ‘(𝐼𝑘)) ∈ ℝ)
1514elexd 3515 . . . . . 6 ((𝜑𝑘𝑋) → (2nd ‘(𝐼𝑘)) ∈ V)
16 hoicoto2.b . . . . . . 7 𝐵 = (𝑘𝑋 ↦ (2nd ‘(𝐼𝑘)))
1716fvmpt2 6774 . . . . . 6 ((𝑘𝑋 ∧ (2nd ‘(𝐼𝑘)) ∈ V) → (𝐵𝑘) = (2nd ‘(𝐼𝑘)))
183, 15, 17syl2anc 586 . . . . 5 ((𝜑𝑘𝑋) → (𝐵𝑘) = (2nd ‘(𝐼𝑘)))
1918eqcomd 2827 . . . 4 ((𝜑𝑘𝑋) → (2nd ‘(𝐼𝑘)) = (𝐵𝑘))
2012, 19oveq12d 7168 . . 3 ((𝜑𝑘𝑋) → ((1st ‘(𝐼𝑘))[,)(2nd ‘(𝐼𝑘))) = ((𝐴𝑘)[,)(𝐵𝑘)))
214, 20eqtrd 2856 . 2 ((𝜑𝑘𝑋) → (([,) ∘ 𝐼)‘𝑘) = ((𝐴𝑘)[,)(𝐵𝑘)))
2221ixpeq2dva 8470 1 (𝜑X𝑘𝑋 (([,) ∘ 𝐼)‘𝑘) = X𝑘𝑋 ((𝐴𝑘)[,)(𝐵𝑘)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 398   = wceq 1533  wcel 2110  Vcvv 3495  cmpt 5139   × cxp 5548  ccom 5554  wf 6346  cfv 6350  (class class class)co 7150  1st c1st 7681  2nd c2nd 7682  Xcixp 8455  cr 10530  [,)cico 12734
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1907  ax-6 1966  ax-7 2011  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2156  ax-12 2172  ax-ext 2793  ax-sep 5196  ax-nul 5203  ax-pow 5259  ax-pr 5322  ax-un 7455
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3an 1085  df-tru 1536  df-ex 1777  df-nf 1781  df-sb 2066  df-mo 2618  df-eu 2650  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-ral 3143  df-rex 3144  df-rab 3147  df-v 3497  df-sbc 3773  df-csb 3884  df-dif 3939  df-un 3941  df-in 3943  df-ss 3952  df-nul 4292  df-if 4468  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4833  df-br 5060  df-opab 5122  df-mpt 5140  df-id 5455  df-xp 5556  df-rel 5557  df-cnv 5558  df-co 5559  df-dm 5560  df-rn 5561  df-res 5562  df-ima 5563  df-iota 6309  df-fun 6352  df-fn 6353  df-f 6354  df-fv 6358  df-ov 7153  df-1st 7683  df-2nd 7684  df-ixp 8456
This theorem is referenced by:  opnvonmbllem2  42908
  Copyright terms: Public domain W3C validator