Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  hoidifhspf Structured version   Visualization version   GIF version

Theorem hoidifhspf 42777
Description: 𝐷 is a function that returns the representation of the left side of the difference of a half-open interval and a half-space. Used in Lemma 115F of [Fremlin1] p. 31 . (Contributed by Glauco Siliprandi, 24-Dec-2020.)
Hypotheses
Ref Expression
hoidifhspf.d 𝐷 = (𝑥 ∈ ℝ ↦ (𝑎 ∈ (ℝ ↑m 𝑋) ↦ (𝑘𝑋 ↦ if(𝑘 = 𝐾, if(𝑥 ≤ (𝑎𝑘), (𝑎𝑘), 𝑥), (𝑎𝑘)))))
hoidifhspf.y (𝜑𝑌 ∈ ℝ)
hoidifhspf.x (𝜑𝑋𝑉)
hoidifhspf.a (𝜑𝐴:𝑋⟶ℝ)
Assertion
Ref Expression
hoidifhspf (𝜑 → ((𝐷𝑌)‘𝐴):𝑋⟶ℝ)
Distinct variable groups:   𝐴,𝑎,𝑘   𝐾,𝑎,𝑥   𝑋,𝑎,𝑘,𝑥   𝑌,𝑎,𝑘,𝑥   𝜑,𝑎,𝑘,𝑥
Allowed substitution hints:   𝐴(𝑥)   𝐷(𝑥,𝑘,𝑎)   𝐾(𝑘)   𝑉(𝑥,𝑘,𝑎)

Proof of Theorem hoidifhspf
StepHypRef Expression
1 hoidifhspf.a . . . . . 6 (𝜑𝐴:𝑋⟶ℝ)
21ffvelrnda 6843 . . . . 5 ((𝜑𝑘𝑋) → (𝐴𝑘) ∈ ℝ)
3 hoidifhspf.y . . . . . 6 (𝜑𝑌 ∈ ℝ)
43adantr 481 . . . . 5 ((𝜑𝑘𝑋) → 𝑌 ∈ ℝ)
52, 4ifcld 4508 . . . 4 ((𝜑𝑘𝑋) → if(𝑌 ≤ (𝐴𝑘), (𝐴𝑘), 𝑌) ∈ ℝ)
65, 2ifcld 4508 . . 3 ((𝜑𝑘𝑋) → if(𝑘 = 𝐾, if(𝑌 ≤ (𝐴𝑘), (𝐴𝑘), 𝑌), (𝐴𝑘)) ∈ ℝ)
76fmpttd 6871 . 2 (𝜑 → (𝑘𝑋 ↦ if(𝑘 = 𝐾, if(𝑌 ≤ (𝐴𝑘), (𝐴𝑘), 𝑌), (𝐴𝑘))):𝑋⟶ℝ)
8 hoidifhspf.d . . . 4 𝐷 = (𝑥 ∈ ℝ ↦ (𝑎 ∈ (ℝ ↑m 𝑋) ↦ (𝑘𝑋 ↦ if(𝑘 = 𝐾, if(𝑥 ≤ (𝑎𝑘), (𝑎𝑘), 𝑥), (𝑎𝑘)))))
9 hoidifhspf.x . . . 4 (𝜑𝑋𝑉)
108, 3, 9, 1hoidifhspval2 42774 . . 3 (𝜑 → ((𝐷𝑌)‘𝐴) = (𝑘𝑋 ↦ if(𝑘 = 𝐾, if(𝑌 ≤ (𝐴𝑘), (𝐴𝑘), 𝑌), (𝐴𝑘))))
1110feq1d 6492 . 2 (𝜑 → (((𝐷𝑌)‘𝐴):𝑋⟶ℝ ↔ (𝑘𝑋 ↦ if(𝑘 = 𝐾, if(𝑌 ≤ (𝐴𝑘), (𝐴𝑘), 𝑌), (𝐴𝑘))):𝑋⟶ℝ))
127, 11mpbird 258 1 (𝜑 → ((𝐷𝑌)‘𝐴):𝑋⟶ℝ)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396   = wceq 1528  wcel 2105  ifcif 4463   class class class wbr 5057  cmpt 5137  wf 6344  cfv 6348  (class class class)co 7145  m cmap 8395  cr 10524  cle 10664
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1787  ax-4 1801  ax-5 1902  ax-6 1961  ax-7 2006  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2151  ax-12 2167  ax-ext 2790  ax-rep 5181  ax-sep 5194  ax-nul 5201  ax-pow 5257  ax-pr 5320  ax-un 7450  ax-cnex 10581  ax-resscn 10582
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 842  df-3an 1081  df-tru 1531  df-ex 1772  df-nf 1776  df-sb 2061  df-mo 2615  df-eu 2647  df-clab 2797  df-cleq 2811  df-clel 2890  df-nfc 2960  df-ne 3014  df-ral 3140  df-rex 3141  df-reu 3142  df-rab 3144  df-v 3494  df-sbc 3770  df-csb 3881  df-dif 3936  df-un 3938  df-in 3940  df-ss 3949  df-nul 4289  df-if 4464  df-pw 4537  df-sn 4558  df-pr 4560  df-op 4564  df-uni 4831  df-iun 4912  df-br 5058  df-opab 5120  df-mpt 5138  df-id 5453  df-xp 5554  df-rel 5555  df-cnv 5556  df-co 5557  df-dm 5558  df-rn 5559  df-res 5560  df-ima 5561  df-iota 6307  df-fun 6350  df-fn 6351  df-f 6352  df-f1 6353  df-fo 6354  df-f1o 6355  df-fv 6356  df-ov 7148  df-oprab 7149  df-mpo 7150  df-map 8397
This theorem is referenced by:  hoidifhspdmvle  42779  hspmbllem1  42785  hspmbllem2  42786
  Copyright terms: Public domain W3C validator