Mathbox for Glauco Siliprandi < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  hoidmvcl Structured version   Visualization version   GIF version

Theorem hoidmvcl 40129
 Description: The dimensional volume of a multidimensional half-open interval is a nonnegative real. (Contributed by Glauco Siliprandi, 21-Nov-2020.)
Hypotheses
Ref Expression
hoidmvcl.l 𝐿 = (𝑥 ∈ Fin ↦ (𝑎 ∈ (ℝ ↑𝑚 𝑥), 𝑏 ∈ (ℝ ↑𝑚 𝑥) ↦ if(𝑥 = ∅, 0, ∏𝑘𝑥 (vol‘((𝑎𝑘)[,)(𝑏𝑘))))))
hoidmvcl.x (𝜑𝑋 ∈ Fin)
hoidmvcl.a (𝜑𝐴:𝑋⟶ℝ)
hoidmvcl.b (𝜑𝐵:𝑋⟶ℝ)
Assertion
Ref Expression
hoidmvcl (𝜑 → (𝐴(𝐿𝑋)𝐵) ∈ (0[,)+∞))
Distinct variable groups:   𝐴,𝑎,𝑏,𝑘   𝐵,𝑎,𝑏,𝑘   𝑋,𝑎,𝑏,𝑘,𝑥   𝜑,𝑎,𝑏,𝑘,𝑥
Allowed substitution hints:   𝐴(𝑥)   𝐵(𝑥)   𝐿(𝑥,𝑘,𝑎,𝑏)

Proof of Theorem hoidmvcl
StepHypRef Expression
1 hoidmvcl.l . . 3 𝐿 = (𝑥 ∈ Fin ↦ (𝑎 ∈ (ℝ ↑𝑚 𝑥), 𝑏 ∈ (ℝ ↑𝑚 𝑥) ↦ if(𝑥 = ∅, 0, ∏𝑘𝑥 (vol‘((𝑎𝑘)[,)(𝑏𝑘))))))
2 hoidmvcl.a . . 3 (𝜑𝐴:𝑋⟶ℝ)
3 hoidmvcl.b . . 3 (𝜑𝐵:𝑋⟶ℝ)
4 hoidmvcl.x . . 3 (𝜑𝑋 ∈ Fin)
51, 2, 3, 4hoidmvval 40124 . 2 (𝜑 → (𝐴(𝐿𝑋)𝐵) = if(𝑋 = ∅, 0, ∏𝑘𝑋 (vol‘((𝐴𝑘)[,)(𝐵𝑘)))))
6 0e0icopnf 12232 . . . 4 0 ∈ (0[,)+∞)
76a1i 11 . . 3 (𝜑 → 0 ∈ (0[,)+∞))
8 0xr 10038 . . . . 5 0 ∈ ℝ*
98a1i 11 . . . 4 (𝜑 → 0 ∈ ℝ*)
10 pnfxr 10044 . . . . 5 +∞ ∈ ℝ*
1110a1i 11 . . . 4 (𝜑 → +∞ ∈ ℝ*)
122ffvelrnda 6320 . . . . . . . 8 ((𝜑𝑘𝑋) → (𝐴𝑘) ∈ ℝ)
133ffvelrnda 6320 . . . . . . . 8 ((𝜑𝑘𝑋) → (𝐵𝑘) ∈ ℝ)
14 volico 39533 . . . . . . . 8 (((𝐴𝑘) ∈ ℝ ∧ (𝐵𝑘) ∈ ℝ) → (vol‘((𝐴𝑘)[,)(𝐵𝑘))) = if((𝐴𝑘) < (𝐵𝑘), ((𝐵𝑘) − (𝐴𝑘)), 0))
1512, 13, 14syl2anc 692 . . . . . . 7 ((𝜑𝑘𝑋) → (vol‘((𝐴𝑘)[,)(𝐵𝑘))) = if((𝐴𝑘) < (𝐵𝑘), ((𝐵𝑘) − (𝐴𝑘)), 0))
1613, 12resubcld 10410 . . . . . . . 8 ((𝜑𝑘𝑋) → ((𝐵𝑘) − (𝐴𝑘)) ∈ ℝ)
17 0red 9993 . . . . . . . 8 ((𝜑𝑘𝑋) → 0 ∈ ℝ)
1816, 17ifcld 4108 . . . . . . 7 ((𝜑𝑘𝑋) → if((𝐴𝑘) < (𝐵𝑘), ((𝐵𝑘) − (𝐴𝑘)), 0) ∈ ℝ)
1915, 18eqeltrd 2698 . . . . . 6 ((𝜑𝑘𝑋) → (vol‘((𝐴𝑘)[,)(𝐵𝑘))) ∈ ℝ)
204, 19fprodrecl 14619 . . . . 5 (𝜑 → ∏𝑘𝑋 (vol‘((𝐴𝑘)[,)(𝐵𝑘))) ∈ ℝ)
2120rexrd 10041 . . . 4 (𝜑 → ∏𝑘𝑋 (vol‘((𝐴𝑘)[,)(𝐵𝑘))) ∈ ℝ*)
22 nfv 1840 . . . . 5 𝑘𝜑
2313rexrd 10041 . . . . . . 7 ((𝜑𝑘𝑋) → (𝐵𝑘) ∈ ℝ*)
24 icombl 23255 . . . . . . 7 (((𝐴𝑘) ∈ ℝ ∧ (𝐵𝑘) ∈ ℝ*) → ((𝐴𝑘)[,)(𝐵𝑘)) ∈ dom vol)
2512, 23, 24syl2anc 692 . . . . . 6 ((𝜑𝑘𝑋) → ((𝐴𝑘)[,)(𝐵𝑘)) ∈ dom vol)
26 volge0 39510 . . . . . 6 (((𝐴𝑘)[,)(𝐵𝑘)) ∈ dom vol → 0 ≤ (vol‘((𝐴𝑘)[,)(𝐵𝑘))))
2725, 26syl 17 . . . . 5 ((𝜑𝑘𝑋) → 0 ≤ (vol‘((𝐴𝑘)[,)(𝐵𝑘))))
2822, 4, 19, 27fprodge0 14660 . . . 4 (𝜑 → 0 ≤ ∏𝑘𝑋 (vol‘((𝐴𝑘)[,)(𝐵𝑘))))
2920ltpnfd 11907 . . . 4 (𝜑 → ∏𝑘𝑋 (vol‘((𝐴𝑘)[,)(𝐵𝑘))) < +∞)
309, 11, 21, 28, 29elicod 12174 . . 3 (𝜑 → ∏𝑘𝑋 (vol‘((𝐴𝑘)[,)(𝐵𝑘))) ∈ (0[,)+∞))
317, 30ifcld 4108 . 2 (𝜑 → if(𝑋 = ∅, 0, ∏𝑘𝑋 (vol‘((𝐴𝑘)[,)(𝐵𝑘)))) ∈ (0[,)+∞))
325, 31eqeltrd 2698 1 (𝜑 → (𝐴(𝐿𝑋)𝐵) ∈ (0[,)+∞))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ∧ wa 384   = wceq 1480   ∈ wcel 1987  ∅c0 3896  ifcif 4063   class class class wbr 4618   ↦ cmpt 4678  dom cdm 5079  ⟶wf 5848  ‘cfv 5852  (class class class)co 6610   ↦ cmpt2 6612   ↑𝑚 cmap 7809  Fincfn 7907  ℝcr 9887  0cc0 9888  +∞cpnf 10023  ℝ*cxr 10025   < clt 10026   ≤ cle 10027   − cmin 10218  [,)cico 12127  ∏cprod 14571  volcvol 23155 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-8 1989  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601  ax-rep 4736  ax-sep 4746  ax-nul 4754  ax-pow 4808  ax-pr 4872  ax-un 6909  ax-inf2 8490  ax-cnex 9944  ax-resscn 9945  ax-1cn 9946  ax-icn 9947  ax-addcl 9948  ax-addrcl 9949  ax-mulcl 9950  ax-mulrcl 9951  ax-mulcom 9952  ax-addass 9953  ax-mulass 9954  ax-distr 9955  ax-i2m1 9956  ax-1ne0 9957  ax-1rid 9958  ax-rnegex 9959  ax-rrecex 9960  ax-cnre 9961  ax-pre-lttri 9962  ax-pre-lttrn 9963  ax-pre-ltadd 9964  ax-pre-mulgt0 9965  ax-pre-sup 9966 This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1037  df-3an 1038  df-tru 1483  df-fal 1486  df-ex 1702  df-nf 1707  df-sb 1878  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-ne 2791  df-nel 2894  df-ral 2912  df-rex 2913  df-reu 2914  df-rmo 2915  df-rab 2916  df-v 3191  df-sbc 3422  df-csb 3519  df-dif 3562  df-un 3564  df-in 3566  df-ss 3573  df-pss 3575  df-nul 3897  df-if 4064  df-pw 4137  df-sn 4154  df-pr 4156  df-tp 4158  df-op 4160  df-uni 4408  df-int 4446  df-iun 4492  df-br 4619  df-opab 4679  df-mpt 4680  df-tr 4718  df-eprel 4990  df-id 4994  df-po 5000  df-so 5001  df-fr 5038  df-se 5039  df-we 5040  df-xp 5085  df-rel 5086  df-cnv 5087  df-co 5088  df-dm 5089  df-rn 5090  df-res 5091  df-ima 5092  df-pred 5644  df-ord 5690  df-on 5691  df-lim 5692  df-suc 5693  df-iota 5815  df-fun 5854  df-fn 5855  df-f 5856  df-f1 5857  df-fo 5858  df-f1o 5859  df-fv 5860  df-isom 5861  df-riota 6571  df-ov 6613  df-oprab 6614  df-mpt2 6615  df-of 6857  df-om 7020  df-1st 7120  df-2nd 7121  df-wrecs 7359  df-recs 7420  df-rdg 7458  df-1o 7512  df-2o 7513  df-oadd 7516  df-er 7694  df-map 7811  df-pm 7812  df-en 7908  df-dom 7909  df-sdom 7910  df-fin 7911  df-fi 8269  df-sup 8300  df-inf 8301  df-oi 8367  df-card 8717  df-cda 8942  df-pnf 10028  df-mnf 10029  df-xr 10030  df-ltxr 10031  df-le 10032  df-sub 10220  df-neg 10221  df-div 10637  df-nn 10973  df-2 11031  df-3 11032  df-n0 11245  df-z 11330  df-uz 11640  df-q 11741  df-rp 11785  df-xneg 11898  df-xadd 11899  df-xmul 11900  df-ioo 12129  df-ico 12131  df-icc 12132  df-fz 12277  df-fzo 12415  df-fl 12541  df-seq 12750  df-exp 12809  df-hash 13066  df-cj 13781  df-re 13782  df-im 13783  df-sqrt 13917  df-abs 13918  df-clim 14161  df-rlim 14162  df-sum 14359  df-prod 14572  df-rest 16015  df-topgen 16036  df-psmet 19670  df-xmet 19671  df-met 19672  df-bl 19673  df-mopn 19674  df-top 20631  df-topon 20648  df-bases 20674  df-cmp 21113  df-ovol 23156  df-vol 23157 This theorem is referenced by:  sge0hsphoire  40136  hoidmv1le  40141  hoidmvlelem1  40142  hoidmvlelem2  40143  hoidmvlelem3  40144  hoidmvlelem4  40145  hoidmvlelem5  40146  hoidmvle  40147  ovnhoilem2  40149  ovnhoi  40150  ovnlecvr2  40157  hspmbllem1  40173  hspmbllem2  40174
 Copyright terms: Public domain W3C validator