Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  hoidmvlelem4 Structured version   Visualization version   GIF version

Theorem hoidmvlelem4 42887
Description: The dimensional volume of a multidimensional half-open interval is less than or equal the generalized sum of the dimensional volumes of countable half-open intervals that cover it. Induction step of Lemma 115B of [Fremlin1] p. 29, case nonempty interval and dimension of the space greater than 1. (Contributed by Glauco Siliprandi, 21-Nov-2020.)
Hypotheses
Ref Expression
hoidmvlelem4.l 𝐿 = (𝑥 ∈ Fin ↦ (𝑎 ∈ (ℝ ↑m 𝑥), 𝑏 ∈ (ℝ ↑m 𝑥) ↦ if(𝑥 = ∅, 0, ∏𝑘𝑥 (vol‘((𝑎𝑘)[,)(𝑏𝑘))))))
hoidmvlelem4.x (𝜑𝑋 ∈ Fin)
hoidmvlelem4.y (𝜑𝑌𝑋)
hoidmvlelem4.n (𝜑𝑌 ≠ ∅)
hoidmvlelem4.z (𝜑𝑍 ∈ (𝑋𝑌))
hoidmvlelem4.w 𝑊 = (𝑌 ∪ {𝑍})
hoidmvlelem4.a (𝜑𝐴:𝑊⟶ℝ)
hoidmvlelem4.b (𝜑𝐵:𝑊⟶ℝ)
hoidmvlelem4.k ((𝜑𝑘𝑊) → (𝐴𝑘) < (𝐵𝑘))
hoidmvlelem4.c (𝜑𝐶:ℕ⟶(ℝ ↑m 𝑊))
hoidmvlelem4.d (𝜑𝐷:ℕ⟶(ℝ ↑m 𝑊))
hoidmvlelem4.r (𝜑 → (Σ^‘(𝑗 ∈ ℕ ↦ ((𝐶𝑗)(𝐿𝑊)(𝐷𝑗)))) ∈ ℝ)
hoidmvlelem4.h 𝐻 = (𝑥 ∈ ℝ ↦ (𝑐 ∈ (ℝ ↑m 𝑊) ↦ (𝑗𝑊 ↦ if(𝑗𝑌, (𝑐𝑗), if((𝑐𝑗) ≤ 𝑥, (𝑐𝑗), 𝑥)))))
hoidmvlelem4.14 𝐺 = ((𝐴𝑌)(𝐿𝑌)(𝐵𝑌))
hoidmvlelem4.e (𝜑𝐸 ∈ ℝ+)
hoidmvlelem4.u 𝑈 = {𝑧 ∈ ((𝐴𝑍)[,](𝐵𝑍)) ∣ (𝐺 · (𝑧 − (𝐴𝑍))) ≤ ((1 + 𝐸) · (Σ^‘(𝑗 ∈ ℕ ↦ ((𝐶𝑗)(𝐿𝑊)((𝐻𝑧)‘(𝐷𝑗))))))}
hoidmvlelem4.s 𝑆 = sup(𝑈, ℝ, < )
hoidmvlelem4.i (𝜑 → ∀𝑒 ∈ (ℝ ↑m 𝑌)∀𝑓 ∈ (ℝ ↑m 𝑌)∀𝑔 ∈ ((ℝ ↑m 𝑌) ↑m ℕ)∀ ∈ ((ℝ ↑m 𝑌) ↑m ℕ)(X𝑘𝑌 ((𝑒𝑘)[,)(𝑓𝑘)) ⊆ 𝑗 ∈ ℕ X𝑘𝑌 (((𝑔𝑗)‘𝑘)[,)((𝑗)‘𝑘)) → (𝑒(𝐿𝑌)𝑓) ≤ (Σ^‘(𝑗 ∈ ℕ ↦ ((𝑔𝑗)(𝐿𝑌)(𝑗))))))
hoidmvlelem4.i2 (𝜑X𝑘𝑊 ((𝐴𝑘)[,)(𝐵𝑘)) ⊆ 𝑗 ∈ ℕ X𝑘𝑊 (((𝐶𝑗)‘𝑘)[,)((𝐷𝑗)‘𝑘)))
Assertion
Ref Expression
hoidmvlelem4 (𝜑 → (𝐴(𝐿𝑊)𝐵) ≤ ((1 + 𝐸) · (Σ^‘(𝑗 ∈ ℕ ↦ ((𝐶𝑗)(𝐿𝑊)(𝐷𝑗))))))
Distinct variable groups:   𝐴,𝑎,𝑏,,𝑗,𝑘,𝑥   𝐴,𝑐,,𝑗,𝑘,𝑥   𝐴,𝑒,𝑓,𝑔,,𝑗,𝑘   𝑧,𝐴,,𝑗   𝐵,𝑎,𝑏,,𝑗,𝑘,𝑥   𝐵,𝑐   𝐵,𝑓,𝑔   𝑧,𝐵   𝐶,𝑎,𝑏,,𝑗,𝑘,𝑥   𝐶,𝑐   𝐶,𝑔   𝑧,𝐶   𝐷,𝑎,𝑏,,𝑗,𝑘,𝑥   𝐷,𝑐   𝐷,𝑔   𝑧,𝐷   𝐸,𝑎,𝑏,,𝑘,𝑥   𝐸,𝑐   𝑧,𝐸   𝐺,𝑎,𝑏,,𝑘,𝑥   𝐺,𝑐   𝑧,𝐺   𝐻,𝑎,𝑏,𝑗,𝑘   𝐻,𝑐   𝑧,𝐻   𝐿,𝑎,𝑏,,𝑗,𝑘,𝑥   𝐿,𝑐   𝑒,𝐿,𝑓,𝑔   𝑧,𝐿   𝑆,𝑎,𝑏,,𝑗,𝑘,𝑥   𝑆,𝑐   𝑆,𝑔   𝑧,𝑆   𝑈,𝑎,𝑏,𝑗,𝑘,𝑥   𝑈,𝑐   𝑧,𝑈   𝑊,𝑎,𝑏,,𝑗,𝑘,𝑥   𝑊,𝑐   𝑧,𝑊   𝑌,𝑎,𝑏,,𝑗,𝑘,𝑥   𝑌,𝑐   𝑒,𝑌,𝑓,𝑔   𝑍,𝑎,𝑏,,𝑗,𝑘,𝑥   𝑍,𝑐   𝑔,𝑍   𝑧,𝑍   𝜑,𝑎,𝑏,,𝑗,𝑘,𝑥   𝜑,𝑐
Allowed substitution hints:   𝜑(𝑧,𝑒,𝑓,𝑔)   𝐵(𝑒)   𝐶(𝑒,𝑓)   𝐷(𝑒,𝑓)   𝑆(𝑒,𝑓)   𝑈(𝑒,𝑓,𝑔,)   𝐸(𝑒,𝑓,𝑔,𝑗)   𝐺(𝑒,𝑓,𝑔,𝑗)   𝐻(𝑥,𝑒,𝑓,𝑔,)   𝑊(𝑒,𝑓,𝑔)   𝑋(𝑥,𝑧,𝑒,𝑓,𝑔,,𝑗,𝑘,𝑎,𝑏,𝑐)   𝑌(𝑧)   𝑍(𝑒,𝑓)

Proof of Theorem hoidmvlelem4
Dummy variables 𝑦 𝑢 𝑖 𝑙 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 rge0ssre 12847 . . 3 (0[,)+∞) ⊆ ℝ
2 hoidmvlelem4.l . . . 4 𝐿 = (𝑥 ∈ Fin ↦ (𝑎 ∈ (ℝ ↑m 𝑥), 𝑏 ∈ (ℝ ↑m 𝑥) ↦ if(𝑥 = ∅, 0, ∏𝑘𝑥 (vol‘((𝑎𝑘)[,)(𝑏𝑘))))))
3 hoidmvlelem4.x . . . . 5 (𝜑𝑋 ∈ Fin)
4 hoidmvlelem4.w . . . . . 6 𝑊 = (𝑌 ∪ {𝑍})
5 hoidmvlelem4.y . . . . . . 7 (𝜑𝑌𝑋)
6 hoidmvlelem4.z . . . . . . . . 9 (𝜑𝑍 ∈ (𝑋𝑌))
76eldifad 3950 . . . . . . . 8 (𝜑𝑍𝑋)
8 snssi 4743 . . . . . . . 8 (𝑍𝑋 → {𝑍} ⊆ 𝑋)
97, 8syl 17 . . . . . . 7 (𝜑 → {𝑍} ⊆ 𝑋)
105, 9unssd 4164 . . . . . 6 (𝜑 → (𝑌 ∪ {𝑍}) ⊆ 𝑋)
114, 10eqsstrid 4017 . . . . 5 (𝜑𝑊𝑋)
12 ssfi 8740 . . . . 5 ((𝑋 ∈ Fin ∧ 𝑊𝑋) → 𝑊 ∈ Fin)
133, 11, 12syl2anc 586 . . . 4 (𝜑𝑊 ∈ Fin)
14 hoidmvlelem4.a . . . 4 (𝜑𝐴:𝑊⟶ℝ)
15 hoidmvlelem4.b . . . 4 (𝜑𝐵:𝑊⟶ℝ)
162, 13, 14, 15hoidmvcl 42871 . . 3 (𝜑 → (𝐴(𝐿𝑊)𝐵) ∈ (0[,)+∞))
171, 16sseldi 3967 . 2 (𝜑 → (𝐴(𝐿𝑊)𝐵) ∈ ℝ)
18 1red 10644 . . . 4 (𝜑 → 1 ∈ ℝ)
19 hoidmvlelem4.e . . . . 5 (𝜑𝐸 ∈ ℝ+)
2019rpred 12434 . . . 4 (𝜑𝐸 ∈ ℝ)
2118, 20readdcld 10672 . . 3 (𝜑 → (1 + 𝐸) ∈ ℝ)
22 nfv 1915 . . . . 5 𝑗𝜑
23 nnex 11646 . . . . . 6 ℕ ∈ V
2423a1i 11 . . . . 5 (𝜑 → ℕ ∈ V)
25 icossicc 12827 . . . . . 6 (0[,)+∞) ⊆ (0[,]+∞)
2613adantr 483 . . . . . . 7 ((𝜑𝑗 ∈ ℕ) → 𝑊 ∈ Fin)
27 hoidmvlelem4.c . . . . . . . . 9 (𝜑𝐶:ℕ⟶(ℝ ↑m 𝑊))
2827ffvelrnda 6853 . . . . . . . 8 ((𝜑𝑗 ∈ ℕ) → (𝐶𝑗) ∈ (ℝ ↑m 𝑊))
29 elmapi 8430 . . . . . . . 8 ((𝐶𝑗) ∈ (ℝ ↑m 𝑊) → (𝐶𝑗):𝑊⟶ℝ)
3028, 29syl 17 . . . . . . 7 ((𝜑𝑗 ∈ ℕ) → (𝐶𝑗):𝑊⟶ℝ)
31 hoidmvlelem4.h . . . . . . . . 9 𝐻 = (𝑥 ∈ ℝ ↦ (𝑐 ∈ (ℝ ↑m 𝑊) ↦ (𝑗𝑊 ↦ if(𝑗𝑌, (𝑐𝑗), if((𝑐𝑗) ≤ 𝑥, (𝑐𝑗), 𝑥)))))
32 eleq1 2902 . . . . . . . . . . . . 13 (𝑗 = → (𝑗𝑌𝑌))
33 fveq2 6672 . . . . . . . . . . . . 13 (𝑗 = → (𝑐𝑗) = (𝑐))
3433breq1d 5078 . . . . . . . . . . . . . 14 (𝑗 = → ((𝑐𝑗) ≤ 𝑥 ↔ (𝑐) ≤ 𝑥))
3534, 33ifbieq1d 4492 . . . . . . . . . . . . 13 (𝑗 = → if((𝑐𝑗) ≤ 𝑥, (𝑐𝑗), 𝑥) = if((𝑐) ≤ 𝑥, (𝑐), 𝑥))
3632, 33, 35ifbieq12d 4496 . . . . . . . . . . . 12 (𝑗 = → if(𝑗𝑌, (𝑐𝑗), if((𝑐𝑗) ≤ 𝑥, (𝑐𝑗), 𝑥)) = if(𝑌, (𝑐), if((𝑐) ≤ 𝑥, (𝑐), 𝑥)))
3736cbvmptv 5171 . . . . . . . . . . 11 (𝑗𝑊 ↦ if(𝑗𝑌, (𝑐𝑗), if((𝑐𝑗) ≤ 𝑥, (𝑐𝑗), 𝑥))) = (𝑊 ↦ if(𝑌, (𝑐), if((𝑐) ≤ 𝑥, (𝑐), 𝑥)))
3837mpteq2i 5160 . . . . . . . . . 10 (𝑐 ∈ (ℝ ↑m 𝑊) ↦ (𝑗𝑊 ↦ if(𝑗𝑌, (𝑐𝑗), if((𝑐𝑗) ≤ 𝑥, (𝑐𝑗), 𝑥)))) = (𝑐 ∈ (ℝ ↑m 𝑊) ↦ (𝑊 ↦ if(𝑌, (𝑐), if((𝑐) ≤ 𝑥, (𝑐), 𝑥))))
3938mpteq2i 5160 . . . . . . . . 9 (𝑥 ∈ ℝ ↦ (𝑐 ∈ (ℝ ↑m 𝑊) ↦ (𝑗𝑊 ↦ if(𝑗𝑌, (𝑐𝑗), if((𝑐𝑗) ≤ 𝑥, (𝑐𝑗), 𝑥))))) = (𝑥 ∈ ℝ ↦ (𝑐 ∈ (ℝ ↑m 𝑊) ↦ (𝑊 ↦ if(𝑌, (𝑐), if((𝑐) ≤ 𝑥, (𝑐), 𝑥)))))
4031, 39eqtri 2846 . . . . . . . 8 𝐻 = (𝑥 ∈ ℝ ↦ (𝑐 ∈ (ℝ ↑m 𝑊) ↦ (𝑊 ↦ if(𝑌, (𝑐), if((𝑐) ≤ 𝑥, (𝑐), 𝑥)))))
41 snidg 4601 . . . . . . . . . . . . 13 (𝑍 ∈ (𝑋𝑌) → 𝑍 ∈ {𝑍})
426, 41syl 17 . . . . . . . . . . . 12 (𝜑𝑍 ∈ {𝑍})
43 elun2 4155 . . . . . . . . . . . 12 (𝑍 ∈ {𝑍} → 𝑍 ∈ (𝑌 ∪ {𝑍}))
4442, 43syl 17 . . . . . . . . . . 11 (𝜑𝑍 ∈ (𝑌 ∪ {𝑍}))
454a1i 11 . . . . . . . . . . . 12 (𝜑𝑊 = (𝑌 ∪ {𝑍}))
4645eqcomd 2829 . . . . . . . . . . 11 (𝜑 → (𝑌 ∪ {𝑍}) = 𝑊)
4744, 46eleqtrd 2917 . . . . . . . . . 10 (𝜑𝑍𝑊)
4815, 47ffvelrnd 6854 . . . . . . . . 9 (𝜑 → (𝐵𝑍) ∈ ℝ)
4948adantr 483 . . . . . . . 8 ((𝜑𝑗 ∈ ℕ) → (𝐵𝑍) ∈ ℝ)
50 hoidmvlelem4.d . . . . . . . . . 10 (𝜑𝐷:ℕ⟶(ℝ ↑m 𝑊))
5150ffvelrnda 6853 . . . . . . . . 9 ((𝜑𝑗 ∈ ℕ) → (𝐷𝑗) ∈ (ℝ ↑m 𝑊))
52 elmapi 8430 . . . . . . . . 9 ((𝐷𝑗) ∈ (ℝ ↑m 𝑊) → (𝐷𝑗):𝑊⟶ℝ)
5351, 52syl 17 . . . . . . . 8 ((𝜑𝑗 ∈ ℕ) → (𝐷𝑗):𝑊⟶ℝ)
5440, 49, 26, 53hsphoif 42865 . . . . . . 7 ((𝜑𝑗 ∈ ℕ) → ((𝐻‘(𝐵𝑍))‘(𝐷𝑗)):𝑊⟶ℝ)
552, 26, 30, 54hoidmvcl 42871 . . . . . 6 ((𝜑𝑗 ∈ ℕ) → ((𝐶𝑗)(𝐿𝑊)((𝐻‘(𝐵𝑍))‘(𝐷𝑗))) ∈ (0[,)+∞))
5625, 55sseldi 3967 . . . . 5 ((𝜑𝑗 ∈ ℕ) → ((𝐶𝑗)(𝐿𝑊)((𝐻‘(𝐵𝑍))‘(𝐷𝑗))) ∈ (0[,]+∞))
5722, 24, 56sge0clmpt 42714 . . . 4 (𝜑 → (Σ^‘(𝑗 ∈ ℕ ↦ ((𝐶𝑗)(𝐿𝑊)((𝐻‘(𝐵𝑍))‘(𝐷𝑗))))) ∈ (0[,]+∞))
5822, 24, 56sge0xrclmpt 42717 . . . . 5 (𝜑 → (Σ^‘(𝑗 ∈ ℕ ↦ ((𝐶𝑗)(𝐿𝑊)((𝐻‘(𝐵𝑍))‘(𝐷𝑗))))) ∈ ℝ*)
59 pnfxr 10697 . . . . . 6 +∞ ∈ ℝ*
6059a1i 11 . . . . 5 (𝜑 → +∞ ∈ ℝ*)
61 hoidmvlelem4.r . . . . . . 7 (𝜑 → (Σ^‘(𝑗 ∈ ℕ ↦ ((𝐶𝑗)(𝐿𝑊)(𝐷𝑗)))) ∈ ℝ)
6261rexrd 10693 . . . . . 6 (𝜑 → (Σ^‘(𝑗 ∈ ℕ ↦ ((𝐶𝑗)(𝐿𝑊)(𝐷𝑗)))) ∈ ℝ*)
632, 26, 30, 53hoidmvcl 42871 . . . . . . . 8 ((𝜑𝑗 ∈ ℕ) → ((𝐶𝑗)(𝐿𝑊)(𝐷𝑗)) ∈ (0[,)+∞))
6425, 63sseldi 3967 . . . . . . 7 ((𝜑𝑗 ∈ ℕ) → ((𝐶𝑗)(𝐿𝑊)(𝐷𝑗)) ∈ (0[,]+∞))
656eldifbd 3951 . . . . . . . . . 10 (𝜑 → ¬ 𝑍𝑌)
6647, 65eldifd 3949 . . . . . . . . 9 (𝜑𝑍 ∈ (𝑊𝑌))
6766adantr 483 . . . . . . . 8 ((𝜑𝑗 ∈ ℕ) → 𝑍 ∈ (𝑊𝑌))
682, 26, 67, 4, 49, 40, 30, 53hsphoidmvle 42875 . . . . . . 7 ((𝜑𝑗 ∈ ℕ) → ((𝐶𝑗)(𝐿𝑊)((𝐻‘(𝐵𝑍))‘(𝐷𝑗))) ≤ ((𝐶𝑗)(𝐿𝑊)(𝐷𝑗)))
6922, 24, 56, 64, 68sge0lempt 42699 . . . . . 6 (𝜑 → (Σ^‘(𝑗 ∈ ℕ ↦ ((𝐶𝑗)(𝐿𝑊)((𝐻‘(𝐵𝑍))‘(𝐷𝑗))))) ≤ (Σ^‘(𝑗 ∈ ℕ ↦ ((𝐶𝑗)(𝐿𝑊)(𝐷𝑗)))))
7061ltpnfd 12519 . . . . . 6 (𝜑 → (Σ^‘(𝑗 ∈ ℕ ↦ ((𝐶𝑗)(𝐿𝑊)(𝐷𝑗)))) < +∞)
7158, 62, 60, 69, 70xrlelttrd 12556 . . . . 5 (𝜑 → (Σ^‘(𝑗 ∈ ℕ ↦ ((𝐶𝑗)(𝐿𝑊)((𝐻‘(𝐵𝑍))‘(𝐷𝑗))))) < +∞)
7258, 60, 71xrltned 41632 . . . 4 (𝜑 → (Σ^‘(𝑗 ∈ ℕ ↦ ((𝐶𝑗)(𝐿𝑊)((𝐻‘(𝐵𝑍))‘(𝐷𝑗))))) ≠ +∞)
73 ge0xrre 41814 . . . 4 (((Σ^‘(𝑗 ∈ ℕ ↦ ((𝐶𝑗)(𝐿𝑊)((𝐻‘(𝐵𝑍))‘(𝐷𝑗))))) ∈ (0[,]+∞) ∧ (Σ^‘(𝑗 ∈ ℕ ↦ ((𝐶𝑗)(𝐿𝑊)((𝐻‘(𝐵𝑍))‘(𝐷𝑗))))) ≠ +∞) → (Σ^‘(𝑗 ∈ ℕ ↦ ((𝐶𝑗)(𝐿𝑊)((𝐻‘(𝐵𝑍))‘(𝐷𝑗))))) ∈ ℝ)
7457, 72, 73syl2anc 586 . . 3 (𝜑 → (Σ^‘(𝑗 ∈ ℕ ↦ ((𝐶𝑗)(𝐿𝑊)((𝐻‘(𝐵𝑍))‘(𝐷𝑗))))) ∈ ℝ)
7521, 74remulcld 10673 . 2 (𝜑 → ((1 + 𝐸) · (Σ^‘(𝑗 ∈ ℕ ↦ ((𝐶𝑗)(𝐿𝑊)((𝐻‘(𝐵𝑍))‘(𝐷𝑗)))))) ∈ ℝ)
7621, 61remulcld 10673 . 2 (𝜑 → ((1 + 𝐸) · (Σ^‘(𝑗 ∈ ℕ ↦ ((𝐶𝑗)(𝐿𝑊)(𝐷𝑗))))) ∈ ℝ)
77 hoidmvlelem4.14 . . . . . . 7 𝐺 = ((𝐴𝑌)(𝐿𝑌)(𝐵𝑌))
78 hoidmvlelem4.u . . . . . . 7 𝑈 = {𝑧 ∈ ((𝐴𝑍)[,](𝐵𝑍)) ∣ (𝐺 · (𝑧 − (𝐴𝑍))) ≤ ((1 + 𝐸) · (Σ^‘(𝑗 ∈ ℕ ↦ ((𝐶𝑗)(𝐿𝑊)((𝐻𝑧)‘(𝐷𝑗))))))}
79 hoidmvlelem4.s . . . . . . 7 𝑆 = sup(𝑈, ℝ, < )
8047ancli 551 . . . . . . . 8 (𝜑 → (𝜑𝑍𝑊))
81 eleq1 2902 . . . . . . . . . . 11 (𝑘 = 𝑍 → (𝑘𝑊𝑍𝑊))
8281anbi2d 630 . . . . . . . . . 10 (𝑘 = 𝑍 → ((𝜑𝑘𝑊) ↔ (𝜑𝑍𝑊)))
83 fveq2 6672 . . . . . . . . . . 11 (𝑘 = 𝑍 → (𝐴𝑘) = (𝐴𝑍))
84 fveq2 6672 . . . . . . . . . . 11 (𝑘 = 𝑍 → (𝐵𝑘) = (𝐵𝑍))
8583, 84breq12d 5081 . . . . . . . . . 10 (𝑘 = 𝑍 → ((𝐴𝑘) < (𝐵𝑘) ↔ (𝐴𝑍) < (𝐵𝑍)))
8682, 85imbi12d 347 . . . . . . . . 9 (𝑘 = 𝑍 → (((𝜑𝑘𝑊) → (𝐴𝑘) < (𝐵𝑘)) ↔ ((𝜑𝑍𝑊) → (𝐴𝑍) < (𝐵𝑍))))
87 hoidmvlelem4.k . . . . . . . . 9 ((𝜑𝑘𝑊) → (𝐴𝑘) < (𝐵𝑘))
8886, 87vtoclg 3569 . . . . . . . 8 (𝑍𝑊 → ((𝜑𝑍𝑊) → (𝐴𝑍) < (𝐵𝑍)))
8947, 80, 88sylc 65 . . . . . . 7 (𝜑 → (𝐴𝑍) < (𝐵𝑍))
902, 3, 5, 6, 4, 14, 15, 27, 50, 61, 31, 77, 19, 78, 79, 89hoidmvlelem1 42884 . . . . . 6 (𝜑𝑆𝑈)
9148rexrd 10693 . . . . . . . 8 (𝜑 → (𝐵𝑍) ∈ ℝ*)
92 iccssxr 12822 . . . . . . . . 9 ((𝐴𝑍)[,](𝐵𝑍)) ⊆ ℝ*
93 ssrab2 4058 . . . . . . . . . . 11 {𝑧 ∈ ((𝐴𝑍)[,](𝐵𝑍)) ∣ (𝐺 · (𝑧 − (𝐴𝑍))) ≤ ((1 + 𝐸) · (Σ^‘(𝑗 ∈ ℕ ↦ ((𝐶𝑗)(𝐿𝑊)((𝐻𝑧)‘(𝐷𝑗))))))} ⊆ ((𝐴𝑍)[,](𝐵𝑍))
9478, 93eqsstri 4003 . . . . . . . . . 10 𝑈 ⊆ ((𝐴𝑍)[,](𝐵𝑍))
9594, 90sseldi 3967 . . . . . . . . 9 (𝜑𝑆 ∈ ((𝐴𝑍)[,](𝐵𝑍)))
9692, 95sseldi 3967 . . . . . . . 8 (𝜑𝑆 ∈ ℝ*)
97 simpl 485 . . . . . . . . . 10 ((𝜑 ∧ ¬ (𝐵𝑍) ≤ 𝑆) → 𝜑)
98 simpr 487 . . . . . . . . . . 11 ((𝜑 ∧ ¬ (𝐵𝑍) ≤ 𝑆) → ¬ (𝐵𝑍) ≤ 𝑆)
9914, 47ffvelrnd 6854 . . . . . . . . . . . . . . 15 (𝜑 → (𝐴𝑍) ∈ ℝ)
10099, 48iccssred 41787 . . . . . . . . . . . . . 14 (𝜑 → ((𝐴𝑍)[,](𝐵𝑍)) ⊆ ℝ)
101100, 95sseldd 3970 . . . . . . . . . . . . 13 (𝜑𝑆 ∈ ℝ)
102101adantr 483 . . . . . . . . . . . 12 ((𝜑 ∧ ¬ (𝐵𝑍) ≤ 𝑆) → 𝑆 ∈ ℝ)
10397, 48syl 17 . . . . . . . . . . . 12 ((𝜑 ∧ ¬ (𝐵𝑍) ≤ 𝑆) → (𝐵𝑍) ∈ ℝ)
104102, 103ltnled 10789 . . . . . . . . . . 11 ((𝜑 ∧ ¬ (𝐵𝑍) ≤ 𝑆) → (𝑆 < (𝐵𝑍) ↔ ¬ (𝐵𝑍) ≤ 𝑆))
10598, 104mpbird 259 . . . . . . . . . 10 ((𝜑 ∧ ¬ (𝐵𝑍) ≤ 𝑆) → 𝑆 < (𝐵𝑍))
1063adantr 483 . . . . . . . . . . 11 ((𝜑𝑆 < (𝐵𝑍)) → 𝑋 ∈ Fin)
1075adantr 483 . . . . . . . . . . 11 ((𝜑𝑆 < (𝐵𝑍)) → 𝑌𝑋)
1086adantr 483 . . . . . . . . . . 11 ((𝜑𝑆 < (𝐵𝑍)) → 𝑍 ∈ (𝑋𝑌))
10914adantr 483 . . . . . . . . . . 11 ((𝜑𝑆 < (𝐵𝑍)) → 𝐴:𝑊⟶ℝ)
11015adantr 483 . . . . . . . . . . 11 ((𝜑𝑆 < (𝐵𝑍)) → 𝐵:𝑊⟶ℝ)
11187adantlr 713 . . . . . . . . . . 11 (((𝜑𝑆 < (𝐵𝑍)) ∧ 𝑘𝑊) → (𝐴𝑘) < (𝐵𝑘))
112 eqid 2823 . . . . . . . . . . 11 (𝑦𝑌 ↦ 0) = (𝑦𝑌 ↦ 0)
11327adantr 483 . . . . . . . . . . 11 ((𝜑𝑆 < (𝐵𝑍)) → 𝐶:ℕ⟶(ℝ ↑m 𝑊))
114 fveq2 6672 . . . . . . . . . . . . . . . 16 (𝑖 = 𝑗 → (𝐶𝑖) = (𝐶𝑗))
115114fveq1d 6674 . . . . . . . . . . . . . . 15 (𝑖 = 𝑗 → ((𝐶𝑖)‘𝑍) = ((𝐶𝑗)‘𝑍))
116 fveq2 6672 . . . . . . . . . . . . . . . 16 (𝑖 = 𝑗 → (𝐷𝑖) = (𝐷𝑗))
117116fveq1d 6674 . . . . . . . . . . . . . . 15 (𝑖 = 𝑗 → ((𝐷𝑖)‘𝑍) = ((𝐷𝑗)‘𝑍))
118115, 117oveq12d 7176 . . . . . . . . . . . . . 14 (𝑖 = 𝑗 → (((𝐶𝑖)‘𝑍)[,)((𝐷𝑖)‘𝑍)) = (((𝐶𝑗)‘𝑍)[,)((𝐷𝑗)‘𝑍)))
119118eleq2d 2900 . . . . . . . . . . . . 13 (𝑖 = 𝑗 → (𝑆 ∈ (((𝐶𝑖)‘𝑍)[,)((𝐷𝑖)‘𝑍)) ↔ 𝑆 ∈ (((𝐶𝑗)‘𝑍)[,)((𝐷𝑗)‘𝑍))))
120114reseq1d 5854 . . . . . . . . . . . . 13 (𝑖 = 𝑗 → ((𝐶𝑖) ↾ 𝑌) = ((𝐶𝑗) ↾ 𝑌))
121119, 120ifbieq1d 4492 . . . . . . . . . . . 12 (𝑖 = 𝑗 → if(𝑆 ∈ (((𝐶𝑖)‘𝑍)[,)((𝐷𝑖)‘𝑍)), ((𝐶𝑖) ↾ 𝑌), (𝑦𝑌 ↦ 0)) = if(𝑆 ∈ (((𝐶𝑗)‘𝑍)[,)((𝐷𝑗)‘𝑍)), ((𝐶𝑗) ↾ 𝑌), (𝑦𝑌 ↦ 0)))
122121cbvmptv 5171 . . . . . . . . . . 11 (𝑖 ∈ ℕ ↦ if(𝑆 ∈ (((𝐶𝑖)‘𝑍)[,)((𝐷𝑖)‘𝑍)), ((𝐶𝑖) ↾ 𝑌), (𝑦𝑌 ↦ 0))) = (𝑗 ∈ ℕ ↦ if(𝑆 ∈ (((𝐶𝑗)‘𝑍)[,)((𝐷𝑗)‘𝑍)), ((𝐶𝑗) ↾ 𝑌), (𝑦𝑌 ↦ 0)))
12350adantr 483 . . . . . . . . . . 11 ((𝜑𝑆 < (𝐵𝑍)) → 𝐷:ℕ⟶(ℝ ↑m 𝑊))
124116reseq1d 5854 . . . . . . . . . . . . 13 (𝑖 = 𝑗 → ((𝐷𝑖) ↾ 𝑌) = ((𝐷𝑗) ↾ 𝑌))
125119, 124ifbieq1d 4492 . . . . . . . . . . . 12 (𝑖 = 𝑗 → if(𝑆 ∈ (((𝐶𝑖)‘𝑍)[,)((𝐷𝑖)‘𝑍)), ((𝐷𝑖) ↾ 𝑌), (𝑦𝑌 ↦ 0)) = if(𝑆 ∈ (((𝐶𝑗)‘𝑍)[,)((𝐷𝑗)‘𝑍)), ((𝐷𝑗) ↾ 𝑌), (𝑦𝑌 ↦ 0)))
126125cbvmptv 5171 . . . . . . . . . . 11 (𝑖 ∈ ℕ ↦ if(𝑆 ∈ (((𝐶𝑖)‘𝑍)[,)((𝐷𝑖)‘𝑍)), ((𝐷𝑖) ↾ 𝑌), (𝑦𝑌 ↦ 0))) = (𝑗 ∈ ℕ ↦ if(𝑆 ∈ (((𝐶𝑗)‘𝑍)[,)((𝐷𝑗)‘𝑍)), ((𝐷𝑗) ↾ 𝑌), (𝑦𝑌 ↦ 0)))
12761adantr 483 . . . . . . . . . . 11 ((𝜑𝑆 < (𝐵𝑍)) → (Σ^‘(𝑗 ∈ ℕ ↦ ((𝐶𝑗)(𝐿𝑊)(𝐷𝑗)))) ∈ ℝ)
12819adantr 483 . . . . . . . . . . 11 ((𝜑𝑆 < (𝐵𝑍)) → 𝐸 ∈ ℝ+)
12990adantr 483 . . . . . . . . . . 11 ((𝜑𝑆 < (𝐵𝑍)) → 𝑆𝑈)
130 simpr 487 . . . . . . . . . . 11 ((𝜑𝑆 < (𝐵𝑍)) → 𝑆 < (𝐵𝑍))
131 biid 263 . . . . . . . . . . . . . . . . 17 (𝑆 ∈ (((𝐶𝑖)‘𝑍)[,)((𝐷𝑖)‘𝑍)) ↔ 𝑆 ∈ (((𝐶𝑖)‘𝑍)[,)((𝐷𝑖)‘𝑍)))
132 eqidd 2824 . . . . . . . . . . . . . . . . . 18 (𝑤 = 𝑦 → 0 = 0)
133132cbvmptv 5171 . . . . . . . . . . . . . . . . 17 (𝑤𝑌 ↦ 0) = (𝑦𝑌 ↦ 0)
134131, 133ifbieq2i 4493 . . . . . . . . . . . . . . . 16 if(𝑆 ∈ (((𝐶𝑖)‘𝑍)[,)((𝐷𝑖)‘𝑍)), ((𝐶𝑖) ↾ 𝑌), (𝑤𝑌 ↦ 0)) = if(𝑆 ∈ (((𝐶𝑖)‘𝑍)[,)((𝐷𝑖)‘𝑍)), ((𝐶𝑖) ↾ 𝑌), (𝑦𝑌 ↦ 0))
135134mpteq2i 5160 . . . . . . . . . . . . . . 15 (𝑖 ∈ ℕ ↦ if(𝑆 ∈ (((𝐶𝑖)‘𝑍)[,)((𝐷𝑖)‘𝑍)), ((𝐶𝑖) ↾ 𝑌), (𝑤𝑌 ↦ 0))) = (𝑖 ∈ ℕ ↦ if(𝑆 ∈ (((𝐶𝑖)‘𝑍)[,)((𝐷𝑖)‘𝑍)), ((𝐶𝑖) ↾ 𝑌), (𝑦𝑌 ↦ 0)))
136135a1i 11 . . . . . . . . . . . . . 14 (𝑙 = 𝑗 → (𝑖 ∈ ℕ ↦ if(𝑆 ∈ (((𝐶𝑖)‘𝑍)[,)((𝐷𝑖)‘𝑍)), ((𝐶𝑖) ↾ 𝑌), (𝑤𝑌 ↦ 0))) = (𝑖 ∈ ℕ ↦ if(𝑆 ∈ (((𝐶𝑖)‘𝑍)[,)((𝐷𝑖)‘𝑍)), ((𝐶𝑖) ↾ 𝑌), (𝑦𝑌 ↦ 0))))
137 id 22 . . . . . . . . . . . . . 14 (𝑙 = 𝑗𝑙 = 𝑗)
138136, 137fveq12d 6679 . . . . . . . . . . . . 13 (𝑙 = 𝑗 → ((𝑖 ∈ ℕ ↦ if(𝑆 ∈ (((𝐶𝑖)‘𝑍)[,)((𝐷𝑖)‘𝑍)), ((𝐶𝑖) ↾ 𝑌), (𝑤𝑌 ↦ 0)))‘𝑙) = ((𝑖 ∈ ℕ ↦ if(𝑆 ∈ (((𝐶𝑖)‘𝑍)[,)((𝐷𝑖)‘𝑍)), ((𝐶𝑖) ↾ 𝑌), (𝑦𝑌 ↦ 0)))‘𝑗))
139131, 133ifbieq2i 4493 . . . . . . . . . . . . . . . 16 if(𝑆 ∈ (((𝐶𝑖)‘𝑍)[,)((𝐷𝑖)‘𝑍)), ((𝐷𝑖) ↾ 𝑌), (𝑤𝑌 ↦ 0)) = if(𝑆 ∈ (((𝐶𝑖)‘𝑍)[,)((𝐷𝑖)‘𝑍)), ((𝐷𝑖) ↾ 𝑌), (𝑦𝑌 ↦ 0))
140139mpteq2i 5160 . . . . . . . . . . . . . . 15 (𝑖 ∈ ℕ ↦ if(𝑆 ∈ (((𝐶𝑖)‘𝑍)[,)((𝐷𝑖)‘𝑍)), ((𝐷𝑖) ↾ 𝑌), (𝑤𝑌 ↦ 0))) = (𝑖 ∈ ℕ ↦ if(𝑆 ∈ (((𝐶𝑖)‘𝑍)[,)((𝐷𝑖)‘𝑍)), ((𝐷𝑖) ↾ 𝑌), (𝑦𝑌 ↦ 0)))
141140a1i 11 . . . . . . . . . . . . . 14 (𝑙 = 𝑗 → (𝑖 ∈ ℕ ↦ if(𝑆 ∈ (((𝐶𝑖)‘𝑍)[,)((𝐷𝑖)‘𝑍)), ((𝐷𝑖) ↾ 𝑌), (𝑤𝑌 ↦ 0))) = (𝑖 ∈ ℕ ↦ if(𝑆 ∈ (((𝐶𝑖)‘𝑍)[,)((𝐷𝑖)‘𝑍)), ((𝐷𝑖) ↾ 𝑌), (𝑦𝑌 ↦ 0))))
142141, 137fveq12d 6679 . . . . . . . . . . . . 13 (𝑙 = 𝑗 → ((𝑖 ∈ ℕ ↦ if(𝑆 ∈ (((𝐶𝑖)‘𝑍)[,)((𝐷𝑖)‘𝑍)), ((𝐷𝑖) ↾ 𝑌), (𝑤𝑌 ↦ 0)))‘𝑙) = ((𝑖 ∈ ℕ ↦ if(𝑆 ∈ (((𝐶𝑖)‘𝑍)[,)((𝐷𝑖)‘𝑍)), ((𝐷𝑖) ↾ 𝑌), (𝑦𝑌 ↦ 0)))‘𝑗))
143138, 142oveq12d 7176 . . . . . . . . . . . 12 (𝑙 = 𝑗 → (((𝑖 ∈ ℕ ↦ if(𝑆 ∈ (((𝐶𝑖)‘𝑍)[,)((𝐷𝑖)‘𝑍)), ((𝐶𝑖) ↾ 𝑌), (𝑤𝑌 ↦ 0)))‘𝑙)(𝐿𝑌)((𝑖 ∈ ℕ ↦ if(𝑆 ∈ (((𝐶𝑖)‘𝑍)[,)((𝐷𝑖)‘𝑍)), ((𝐷𝑖) ↾ 𝑌), (𝑤𝑌 ↦ 0)))‘𝑙)) = (((𝑖 ∈ ℕ ↦ if(𝑆 ∈ (((𝐶𝑖)‘𝑍)[,)((𝐷𝑖)‘𝑍)), ((𝐶𝑖) ↾ 𝑌), (𝑦𝑌 ↦ 0)))‘𝑗)(𝐿𝑌)((𝑖 ∈ ℕ ↦ if(𝑆 ∈ (((𝐶𝑖)‘𝑍)[,)((𝐷𝑖)‘𝑍)), ((𝐷𝑖) ↾ 𝑌), (𝑦𝑌 ↦ 0)))‘𝑗)))
144143cbvmptv 5171 . . . . . . . . . . 11 (𝑙 ∈ ℕ ↦ (((𝑖 ∈ ℕ ↦ if(𝑆 ∈ (((𝐶𝑖)‘𝑍)[,)((𝐷𝑖)‘𝑍)), ((𝐶𝑖) ↾ 𝑌), (𝑤𝑌 ↦ 0)))‘𝑙)(𝐿𝑌)((𝑖 ∈ ℕ ↦ if(𝑆 ∈ (((𝐶𝑖)‘𝑍)[,)((𝐷𝑖)‘𝑍)), ((𝐷𝑖) ↾ 𝑌), (𝑤𝑌 ↦ 0)))‘𝑙))) = (𝑗 ∈ ℕ ↦ (((𝑖 ∈ ℕ ↦ if(𝑆 ∈ (((𝐶𝑖)‘𝑍)[,)((𝐷𝑖)‘𝑍)), ((𝐶𝑖) ↾ 𝑌), (𝑦𝑌 ↦ 0)))‘𝑗)(𝐿𝑌)((𝑖 ∈ ℕ ↦ if(𝑆 ∈ (((𝐶𝑖)‘𝑍)[,)((𝐷𝑖)‘𝑍)), ((𝐷𝑖) ↾ 𝑌), (𝑦𝑌 ↦ 0)))‘𝑗)))
145 hoidmvlelem4.i . . . . . . . . . . . 12 (𝜑 → ∀𝑒 ∈ (ℝ ↑m 𝑌)∀𝑓 ∈ (ℝ ↑m 𝑌)∀𝑔 ∈ ((ℝ ↑m 𝑌) ↑m ℕ)∀ ∈ ((ℝ ↑m 𝑌) ↑m ℕ)(X𝑘𝑌 ((𝑒𝑘)[,)(𝑓𝑘)) ⊆ 𝑗 ∈ ℕ X𝑘𝑌 (((𝑔𝑗)‘𝑘)[,)((𝑗)‘𝑘)) → (𝑒(𝐿𝑌)𝑓) ≤ (Σ^‘(𝑗 ∈ ℕ ↦ ((𝑔𝑗)(𝐿𝑌)(𝑗))))))
146145adantr 483 . . . . . . . . . . 11 ((𝜑𝑆 < (𝐵𝑍)) → ∀𝑒 ∈ (ℝ ↑m 𝑌)∀𝑓 ∈ (ℝ ↑m 𝑌)∀𝑔 ∈ ((ℝ ↑m 𝑌) ↑m ℕ)∀ ∈ ((ℝ ↑m 𝑌) ↑m ℕ)(X𝑘𝑌 ((𝑒𝑘)[,)(𝑓𝑘)) ⊆ 𝑗 ∈ ℕ X𝑘𝑌 (((𝑔𝑗)‘𝑘)[,)((𝑗)‘𝑘)) → (𝑒(𝐿𝑌)𝑓) ≤ (Σ^‘(𝑗 ∈ ℕ ↦ ((𝑔𝑗)(𝐿𝑌)(𝑗))))))
147 hoidmvlelem4.i2 . . . . . . . . . . . 12 (𝜑X𝑘𝑊 ((𝐴𝑘)[,)(𝐵𝑘)) ⊆ 𝑗 ∈ ℕ X𝑘𝑊 (((𝐶𝑗)‘𝑘)[,)((𝐷𝑗)‘𝑘)))
148147adantr 483 . . . . . . . . . . 11 ((𝜑𝑆 < (𝐵𝑍)) → X𝑘𝑊 ((𝐴𝑘)[,)(𝐵𝑘)) ⊆ 𝑗 ∈ ℕ X𝑘𝑊 (((𝐶𝑗)‘𝑘)[,)((𝐷𝑗)‘𝑘)))
149 eqid 2823 . . . . . . . . . . . 12 (𝑥X𝑦𝑌 ((𝐴𝑦)[,)(𝐵𝑦)) ↦ (𝑦𝑊 ↦ if(𝑦𝑌, (𝑥𝑦), 𝑆))) = (𝑥X𝑦𝑌 ((𝐴𝑦)[,)(𝐵𝑦)) ↦ (𝑦𝑊 ↦ if(𝑦𝑌, (𝑥𝑦), 𝑆)))
150 fveq2 6672 . . . . . . . . . . . . . . 15 (𝑦 = 𝑘 → (𝐴𝑦) = (𝐴𝑘))
151 fveq2 6672 . . . . . . . . . . . . . . 15 (𝑦 = 𝑘 → (𝐵𝑦) = (𝐵𝑘))
152150, 151oveq12d 7176 . . . . . . . . . . . . . 14 (𝑦 = 𝑘 → ((𝐴𝑦)[,)(𝐵𝑦)) = ((𝐴𝑘)[,)(𝐵𝑘)))
153152cbvixpv 8481 . . . . . . . . . . . . 13 X𝑦𝑌 ((𝐴𝑦)[,)(𝐵𝑦)) = X𝑘𝑌 ((𝐴𝑘)[,)(𝐵𝑘))
154 eleq1 2902 . . . . . . . . . . . . . . 15 (𝑦 = 𝑘 → (𝑦𝑌𝑘𝑌))
155 fveq2 6672 . . . . . . . . . . . . . . 15 (𝑦 = 𝑘 → (𝑥𝑦) = (𝑥𝑘))
156154, 155ifbieq1d 4492 . . . . . . . . . . . . . 14 (𝑦 = 𝑘 → if(𝑦𝑌, (𝑥𝑦), 𝑆) = if(𝑘𝑌, (𝑥𝑘), 𝑆))
157156cbvmptv 5171 . . . . . . . . . . . . 13 (𝑦𝑊 ↦ if(𝑦𝑌, (𝑥𝑦), 𝑆)) = (𝑘𝑊 ↦ if(𝑘𝑌, (𝑥𝑘), 𝑆))
158153, 157mpteq12i 5161 . . . . . . . . . . . 12 (𝑥X𝑦𝑌 ((𝐴𝑦)[,)(𝐵𝑦)) ↦ (𝑦𝑊 ↦ if(𝑦𝑌, (𝑥𝑦), 𝑆))) = (𝑥X𝑘𝑌 ((𝐴𝑘)[,)(𝐵𝑘)) ↦ (𝑘𝑊 ↦ if(𝑘𝑌, (𝑥𝑘), 𝑆)))
159149, 158eqtri 2846 . . . . . . . . . . 11 (𝑥X𝑦𝑌 ((𝐴𝑦)[,)(𝐵𝑦)) ↦ (𝑦𝑊 ↦ if(𝑦𝑌, (𝑥𝑦), 𝑆))) = (𝑥X𝑘𝑌 ((𝐴𝑘)[,)(𝐵𝑘)) ↦ (𝑘𝑊 ↦ if(𝑘𝑌, (𝑥𝑘), 𝑆)))
1602, 106, 107, 108, 4, 109, 110, 111, 112, 113, 122, 123, 126, 127, 31, 77, 128, 78, 129, 130, 144, 146, 148, 159hoidmvlelem3 42886 . . . . . . . . . 10 ((𝜑𝑆 < (𝐵𝑍)) → ∃𝑢𝑈 𝑆 < 𝑢)
16197, 105, 160syl2anc 586 . . . . . . . . 9 ((𝜑 ∧ ¬ (𝐵𝑍) ≤ 𝑆) → ∃𝑢𝑈 𝑆 < 𝑢)
16294a1i 11 . . . . . . . . . . . . . . . . . 18 (𝜑𝑈 ⊆ ((𝐴𝑍)[,](𝐵𝑍)))
163162, 100sstrd 3979 . . . . . . . . . . . . . . . . 17 (𝜑𝑈 ⊆ ℝ)
164163adantr 483 . . . . . . . . . . . . . . . 16 ((𝜑𝑢𝑈) → 𝑈 ⊆ ℝ)
165 ne0i 4302 . . . . . . . . . . . . . . . . 17 (𝑢𝑈𝑈 ≠ ∅)
166165adantl 484 . . . . . . . . . . . . . . . 16 ((𝜑𝑢𝑈) → 𝑈 ≠ ∅)
16799rexrd 10693 . . . . . . . . . . . . . . . . . . . . 21 (𝜑 → (𝐴𝑍) ∈ ℝ*)
168167adantr 483 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑢𝑈) → (𝐴𝑍) ∈ ℝ*)
16991adantr 483 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑢𝑈) → (𝐵𝑍) ∈ ℝ*)
170162sselda 3969 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑢𝑈) → 𝑢 ∈ ((𝐴𝑍)[,](𝐵𝑍)))
171 iccleub 12795 . . . . . . . . . . . . . . . . . . . 20 (((𝐴𝑍) ∈ ℝ* ∧ (𝐵𝑍) ∈ ℝ*𝑢 ∈ ((𝐴𝑍)[,](𝐵𝑍))) → 𝑢 ≤ (𝐵𝑍))
172168, 169, 170, 171syl3anc 1367 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑢𝑈) → 𝑢 ≤ (𝐵𝑍))
173172ralrimiva 3184 . . . . . . . . . . . . . . . . . 18 (𝜑 → ∀𝑢𝑈 𝑢 ≤ (𝐵𝑍))
174 brralrspcev 5128 . . . . . . . . . . . . . . . . . 18 (((𝐵𝑍) ∈ ℝ ∧ ∀𝑢𝑈 𝑢 ≤ (𝐵𝑍)) → ∃𝑦 ∈ ℝ ∀𝑢𝑈 𝑢𝑦)
17548, 173, 174syl2anc 586 . . . . . . . . . . . . . . . . 17 (𝜑 → ∃𝑦 ∈ ℝ ∀𝑢𝑈 𝑢𝑦)
176175adantr 483 . . . . . . . . . . . . . . . 16 ((𝜑𝑢𝑈) → ∃𝑦 ∈ ℝ ∀𝑢𝑈 𝑢𝑦)
177 simpr 487 . . . . . . . . . . . . . . . 16 ((𝜑𝑢𝑈) → 𝑢𝑈)
178 suprub 11604 . . . . . . . . . . . . . . . 16 (((𝑈 ⊆ ℝ ∧ 𝑈 ≠ ∅ ∧ ∃𝑦 ∈ ℝ ∀𝑢𝑈 𝑢𝑦) ∧ 𝑢𝑈) → 𝑢 ≤ sup(𝑈, ℝ, < ))
179164, 166, 176, 177, 178syl31anc 1369 . . . . . . . . . . . . . . 15 ((𝜑𝑢𝑈) → 𝑢 ≤ sup(𝑈, ℝ, < ))
180179, 79breqtrrdi 5110 . . . . . . . . . . . . . 14 ((𝜑𝑢𝑈) → 𝑢𝑆)
181180ralrimiva 3184 . . . . . . . . . . . . 13 (𝜑 → ∀𝑢𝑈 𝑢𝑆)
182164, 177sseldd 3970 . . . . . . . . . . . . . . 15 ((𝜑𝑢𝑈) → 𝑢 ∈ ℝ)
183101adantr 483 . . . . . . . . . . . . . . 15 ((𝜑𝑢𝑈) → 𝑆 ∈ ℝ)
184182, 183lenltd 10788 . . . . . . . . . . . . . 14 ((𝜑𝑢𝑈) → (𝑢𝑆 ↔ ¬ 𝑆 < 𝑢))
185184ralbidva 3198 . . . . . . . . . . . . 13 (𝜑 → (∀𝑢𝑈 𝑢𝑆 ↔ ∀𝑢𝑈 ¬ 𝑆 < 𝑢))
186181, 185mpbid 234 . . . . . . . . . . . 12 (𝜑 → ∀𝑢𝑈 ¬ 𝑆 < 𝑢)
187 ralnex 3238 . . . . . . . . . . . 12 (∀𝑢𝑈 ¬ 𝑆 < 𝑢 ↔ ¬ ∃𝑢𝑈 𝑆 < 𝑢)
188186, 187sylib 220 . . . . . . . . . . 11 (𝜑 → ¬ ∃𝑢𝑈 𝑆 < 𝑢)
189188adantr 483 . . . . . . . . . 10 ((𝜑𝑆 < (𝐵𝑍)) → ¬ ∃𝑢𝑈 𝑆 < 𝑢)
19097, 105, 189syl2anc 586 . . . . . . . . 9 ((𝜑 ∧ ¬ (𝐵𝑍) ≤ 𝑆) → ¬ ∃𝑢𝑈 𝑆 < 𝑢)
191161, 190condan 816 . . . . . . . 8 (𝜑 → (𝐵𝑍) ≤ 𝑆)
192 iccleub 12795 . . . . . . . . 9 (((𝐴𝑍) ∈ ℝ* ∧ (𝐵𝑍) ∈ ℝ*𝑆 ∈ ((𝐴𝑍)[,](𝐵𝑍))) → 𝑆 ≤ (𝐵𝑍))
193167, 91, 95, 192syl3anc 1367 . . . . . . . 8 (𝜑𝑆 ≤ (𝐵𝑍))
19491, 96, 191, 193xrletrid 12551 . . . . . . 7 (𝜑 → (𝐵𝑍) = 𝑆)
19578eqcomi 2832 . . . . . . . 8 {𝑧 ∈ ((𝐴𝑍)[,](𝐵𝑍)) ∣ (𝐺 · (𝑧 − (𝐴𝑍))) ≤ ((1 + 𝐸) · (Σ^‘(𝑗 ∈ ℕ ↦ ((𝐶𝑗)(𝐿𝑊)((𝐻𝑧)‘(𝐷𝑗))))))} = 𝑈
196195a1i 11 . . . . . . 7 (𝜑 → {𝑧 ∈ ((𝐴𝑍)[,](𝐵𝑍)) ∣ (𝐺 · (𝑧 − (𝐴𝑍))) ≤ ((1 + 𝐸) · (Σ^‘(𝑗 ∈ ℕ ↦ ((𝐶𝑗)(𝐿𝑊)((𝐻𝑧)‘(𝐷𝑗))))))} = 𝑈)
197194, 196eleq12d 2909 . . . . . 6 (𝜑 → ((𝐵𝑍) ∈ {𝑧 ∈ ((𝐴𝑍)[,](𝐵𝑍)) ∣ (𝐺 · (𝑧 − (𝐴𝑍))) ≤ ((1 + 𝐸) · (Σ^‘(𝑗 ∈ ℕ ↦ ((𝐶𝑗)(𝐿𝑊)((𝐻𝑧)‘(𝐷𝑗))))))} ↔ 𝑆𝑈))
19890, 197mpbird 259 . . . . 5 (𝜑 → (𝐵𝑍) ∈ {𝑧 ∈ ((𝐴𝑍)[,](𝐵𝑍)) ∣ (𝐺 · (𝑧 − (𝐴𝑍))) ≤ ((1 + 𝐸) · (Σ^‘(𝑗 ∈ ℕ ↦ ((𝐶𝑗)(𝐿𝑊)((𝐻𝑧)‘(𝐷𝑗))))))})
199 oveq1 7165 . . . . . . . 8 (𝑧 = (𝐵𝑍) → (𝑧 − (𝐴𝑍)) = ((𝐵𝑍) − (𝐴𝑍)))
200199oveq2d 7174 . . . . . . 7 (𝑧 = (𝐵𝑍) → (𝐺 · (𝑧 − (𝐴𝑍))) = (𝐺 · ((𝐵𝑍) − (𝐴𝑍))))
201 fveq2 6672 . . . . . . . . . . . 12 (𝑧 = (𝐵𝑍) → (𝐻𝑧) = (𝐻‘(𝐵𝑍)))
202201fveq1d 6674 . . . . . . . . . . 11 (𝑧 = (𝐵𝑍) → ((𝐻𝑧)‘(𝐷𝑗)) = ((𝐻‘(𝐵𝑍))‘(𝐷𝑗)))
203202oveq2d 7174 . . . . . . . . . 10 (𝑧 = (𝐵𝑍) → ((𝐶𝑗)(𝐿𝑊)((𝐻𝑧)‘(𝐷𝑗))) = ((𝐶𝑗)(𝐿𝑊)((𝐻‘(𝐵𝑍))‘(𝐷𝑗))))
204203mpteq2dv 5164 . . . . . . . . 9 (𝑧 = (𝐵𝑍) → (𝑗 ∈ ℕ ↦ ((𝐶𝑗)(𝐿𝑊)((𝐻𝑧)‘(𝐷𝑗)))) = (𝑗 ∈ ℕ ↦ ((𝐶𝑗)(𝐿𝑊)((𝐻‘(𝐵𝑍))‘(𝐷𝑗)))))
205204fveq2d 6676 . . . . . . . 8 (𝑧 = (𝐵𝑍) → (Σ^‘(𝑗 ∈ ℕ ↦ ((𝐶𝑗)(𝐿𝑊)((𝐻𝑧)‘(𝐷𝑗))))) = (Σ^‘(𝑗 ∈ ℕ ↦ ((𝐶𝑗)(𝐿𝑊)((𝐻‘(𝐵𝑍))‘(𝐷𝑗))))))
206205oveq2d 7174 . . . . . . 7 (𝑧 = (𝐵𝑍) → ((1 + 𝐸) · (Σ^‘(𝑗 ∈ ℕ ↦ ((𝐶𝑗)(𝐿𝑊)((𝐻𝑧)‘(𝐷𝑗)))))) = ((1 + 𝐸) · (Σ^‘(𝑗 ∈ ℕ ↦ ((𝐶𝑗)(𝐿𝑊)((𝐻‘(𝐵𝑍))‘(𝐷𝑗)))))))
207200, 206breq12d 5081 . . . . . 6 (𝑧 = (𝐵𝑍) → ((𝐺 · (𝑧 − (𝐴𝑍))) ≤ ((1 + 𝐸) · (Σ^‘(𝑗 ∈ ℕ ↦ ((𝐶𝑗)(𝐿𝑊)((𝐻𝑧)‘(𝐷𝑗)))))) ↔ (𝐺 · ((𝐵𝑍) − (𝐴𝑍))) ≤ ((1 + 𝐸) · (Σ^‘(𝑗 ∈ ℕ ↦ ((𝐶𝑗)(𝐿𝑊)((𝐻‘(𝐵𝑍))‘(𝐷𝑗))))))))
208207elrab 3682 . . . . 5 ((𝐵𝑍) ∈ {𝑧 ∈ ((𝐴𝑍)[,](𝐵𝑍)) ∣ (𝐺 · (𝑧 − (𝐴𝑍))) ≤ ((1 + 𝐸) · (Σ^‘(𝑗 ∈ ℕ ↦ ((𝐶𝑗)(𝐿𝑊)((𝐻𝑧)‘(𝐷𝑗))))))} ↔ ((𝐵𝑍) ∈ ((𝐴𝑍)[,](𝐵𝑍)) ∧ (𝐺 · ((𝐵𝑍) − (𝐴𝑍))) ≤ ((1 + 𝐸) · (Σ^‘(𝑗 ∈ ℕ ↦ ((𝐶𝑗)(𝐿𝑊)((𝐻‘(𝐵𝑍))‘(𝐷𝑗))))))))
209198, 208sylib 220 . . . 4 (𝜑 → ((𝐵𝑍) ∈ ((𝐴𝑍)[,](𝐵𝑍)) ∧ (𝐺 · ((𝐵𝑍) − (𝐴𝑍))) ≤ ((1 + 𝐸) · (Σ^‘(𝑗 ∈ ℕ ↦ ((𝐶𝑗)(𝐿𝑊)((𝐻‘(𝐵𝑍))‘(𝐷𝑗))))))))
210209simprd 498 . . 3 (𝜑 → (𝐺 · ((𝐵𝑍) − (𝐴𝑍))) ≤ ((1 + 𝐸) · (Σ^‘(𝑗 ∈ ℕ ↦ ((𝐶𝑗)(𝐿𝑊)((𝐻‘(𝐵𝑍))‘(𝐷𝑗)))))))
2113, 5ssfid 8743 . . . . . 6 (𝜑𝑌 ∈ Fin)
212 eqid 2823 . . . . . 6 𝑘𝑌 (vol‘((𝐴𝑘)[,)(𝐵𝑘))) = ∏𝑘𝑌 (vol‘((𝐴𝑘)[,)(𝐵𝑘)))
2132, 211, 6, 65, 4, 14, 15, 212hoiprodp1 42877 . . . . 5 (𝜑 → (𝐴(𝐿𝑊)𝐵) = (∏𝑘𝑌 (vol‘((𝐴𝑘)[,)(𝐵𝑘))) · (vol‘((𝐴𝑍)[,)(𝐵𝑍)))))
214 eqidd 2824 . . . . . . 7 (𝜑 → ∏𝑘𝑌 ((𝐵𝑘) − (𝐴𝑘)) = ∏𝑘𝑌 ((𝐵𝑘) − (𝐴𝑘)))
21514adantr 483 . . . . . . . . . 10 ((𝜑𝑘𝑌) → 𝐴:𝑊⟶ℝ)
216 ssun1 4150 . . . . . . . . . . . 12 𝑌 ⊆ (𝑌 ∪ {𝑍})
2174eqcomi 2832 . . . . . . . . . . . 12 (𝑌 ∪ {𝑍}) = 𝑊
218216, 217sseqtri 4005 . . . . . . . . . . 11 𝑌𝑊
219 simpr 487 . . . . . . . . . . 11 ((𝜑𝑘𝑌) → 𝑘𝑌)
220218, 219sseldi 3967 . . . . . . . . . 10 ((𝜑𝑘𝑌) → 𝑘𝑊)
221215, 220ffvelrnd 6854 . . . . . . . . 9 ((𝜑𝑘𝑌) → (𝐴𝑘) ∈ ℝ)
22215adantr 483 . . . . . . . . . 10 ((𝜑𝑘𝑌) → 𝐵:𝑊⟶ℝ)
223222, 220ffvelrnd 6854 . . . . . . . . 9 ((𝜑𝑘𝑌) → (𝐵𝑘) ∈ ℝ)
224220, 87syldan 593 . . . . . . . . 9 ((𝜑𝑘𝑌) → (𝐴𝑘) < (𝐵𝑘))
225221, 223, 224volicon0 42864 . . . . . . . 8 ((𝜑𝑘𝑌) → (vol‘((𝐴𝑘)[,)(𝐵𝑘))) = ((𝐵𝑘) − (𝐴𝑘)))
226225prodeq2dv 15279 . . . . . . 7 (𝜑 → ∏𝑘𝑌 (vol‘((𝐴𝑘)[,)(𝐵𝑘))) = ∏𝑘𝑌 ((𝐵𝑘) − (𝐴𝑘)))
22777a1i 11 . . . . . . . 8 (𝜑𝐺 = ((𝐴𝑌)(𝐿𝑌)(𝐵𝑌)))
228 hoidmvlelem4.n . . . . . . . . 9 (𝜑𝑌 ≠ ∅)
229218a1i 11 . . . . . . . . . 10 (𝜑𝑌𝑊)
23014, 229fssresd 6547 . . . . . . . . 9 (𝜑 → (𝐴𝑌):𝑌⟶ℝ)
23115, 229fssresd 6547 . . . . . . . . 9 (𝜑 → (𝐵𝑌):𝑌⟶ℝ)
2322, 211, 228, 230, 231hoidmvn0val 42873 . . . . . . . 8 (𝜑 → ((𝐴𝑌)(𝐿𝑌)(𝐵𝑌)) = ∏𝑘𝑌 (vol‘(((𝐴𝑌)‘𝑘)[,)((𝐵𝑌)‘𝑘))))
233 fvres 6691 . . . . . . . . . . . . 13 (𝑘𝑌 → ((𝐴𝑌)‘𝑘) = (𝐴𝑘))
234 fvres 6691 . . . . . . . . . . . . 13 (𝑘𝑌 → ((𝐵𝑌)‘𝑘) = (𝐵𝑘))
235233, 234oveq12d 7176 . . . . . . . . . . . 12 (𝑘𝑌 → (((𝐴𝑌)‘𝑘)[,)((𝐵𝑌)‘𝑘)) = ((𝐴𝑘)[,)(𝐵𝑘)))
236235fveq2d 6676 . . . . . . . . . . 11 (𝑘𝑌 → (vol‘(((𝐴𝑌)‘𝑘)[,)((𝐵𝑌)‘𝑘))) = (vol‘((𝐴𝑘)[,)(𝐵𝑘))))
237236adantl 484 . . . . . . . . . 10 ((𝜑𝑘𝑌) → (vol‘(((𝐴𝑌)‘𝑘)[,)((𝐵𝑌)‘𝑘))) = (vol‘((𝐴𝑘)[,)(𝐵𝑘))))
238 volico 42275 . . . . . . . . . . 11 (((𝐴𝑘) ∈ ℝ ∧ (𝐵𝑘) ∈ ℝ) → (vol‘((𝐴𝑘)[,)(𝐵𝑘))) = if((𝐴𝑘) < (𝐵𝑘), ((𝐵𝑘) − (𝐴𝑘)), 0))
239221, 223, 238syl2anc 586 . . . . . . . . . 10 ((𝜑𝑘𝑌) → (vol‘((𝐴𝑘)[,)(𝐵𝑘))) = if((𝐴𝑘) < (𝐵𝑘), ((𝐵𝑘) − (𝐴𝑘)), 0))
240239, 225eqtr3d 2860 . . . . . . . . . 10 ((𝜑𝑘𝑌) → if((𝐴𝑘) < (𝐵𝑘), ((𝐵𝑘) − (𝐴𝑘)), 0) = ((𝐵𝑘) − (𝐴𝑘)))
241237, 239, 2403eqtrd 2862 . . . . . . . . 9 ((𝜑𝑘𝑌) → (vol‘(((𝐴𝑌)‘𝑘)[,)((𝐵𝑌)‘𝑘))) = ((𝐵𝑘) − (𝐴𝑘)))
242241prodeq2dv 15279 . . . . . . . 8 (𝜑 → ∏𝑘𝑌 (vol‘(((𝐴𝑌)‘𝑘)[,)((𝐵𝑌)‘𝑘))) = ∏𝑘𝑌 ((𝐵𝑘) − (𝐴𝑘)))
243227, 232, 2423eqtrd 2862 . . . . . . 7 (𝜑𝐺 = ∏𝑘𝑌 ((𝐵𝑘) − (𝐴𝑘)))
244214, 226, 2433eqtr4d 2868 . . . . . 6 (𝜑 → ∏𝑘𝑌 (vol‘((𝐴𝑘)[,)(𝐵𝑘))) = 𝐺)
24599, 48, 89volicon0 42864 . . . . . 6 (𝜑 → (vol‘((𝐴𝑍)[,)(𝐵𝑍))) = ((𝐵𝑍) − (𝐴𝑍)))
246244, 245oveq12d 7176 . . . . 5 (𝜑 → (∏𝑘𝑌 (vol‘((𝐴𝑘)[,)(𝐵𝑘))) · (vol‘((𝐴𝑍)[,)(𝐵𝑍)))) = (𝐺 · ((𝐵𝑍) − (𝐴𝑍))))
247213, 246eqtrd 2858 . . . 4 (𝜑 → (𝐴(𝐿𝑊)𝐵) = (𝐺 · ((𝐵𝑍) − (𝐴𝑍))))
248247breq1d 5078 . . 3 (𝜑 → ((𝐴(𝐿𝑊)𝐵) ≤ ((1 + 𝐸) · (Σ^‘(𝑗 ∈ ℕ ↦ ((𝐶𝑗)(𝐿𝑊)((𝐻‘(𝐵𝑍))‘(𝐷𝑗)))))) ↔ (𝐺 · ((𝐵𝑍) − (𝐴𝑍))) ≤ ((1 + 𝐸) · (Σ^‘(𝑗 ∈ ℕ ↦ ((𝐶𝑗)(𝐿𝑊)((𝐻‘(𝐵𝑍))‘(𝐷𝑗))))))))
249210, 248mpbird 259 . 2 (𝜑 → (𝐴(𝐿𝑊)𝐵) ≤ ((1 + 𝐸) · (Σ^‘(𝑗 ∈ ℕ ↦ ((𝐶𝑗)(𝐿𝑊)((𝐻‘(𝐵𝑍))‘(𝐷𝑗)))))))
250 0le1 11165 . . . . 5 0 ≤ 1
251250a1i 11 . . . 4 (𝜑 → 0 ≤ 1)
25219rpge0d 12438 . . . 4 (𝜑 → 0 ≤ 𝐸)
25318, 20, 251, 252addge0d 11218 . . 3 (𝜑 → 0 ≤ (1 + 𝐸))
25474, 61, 21, 253, 69lemul2ad 11582 . 2 (𝜑 → ((1 + 𝐸) · (Σ^‘(𝑗 ∈ ℕ ↦ ((𝐶𝑗)(𝐿𝑊)((𝐻‘(𝐵𝑍))‘(𝐷𝑗)))))) ≤ ((1 + 𝐸) · (Σ^‘(𝑗 ∈ ℕ ↦ ((𝐶𝑗)(𝐿𝑊)(𝐷𝑗))))))
25517, 75, 76, 249, 254letrd 10799 1 (𝜑 → (𝐴(𝐿𝑊)𝐵) ≤ ((1 + 𝐸) · (Σ^‘(𝑗 ∈ ℕ ↦ ((𝐶𝑗)(𝐿𝑊)(𝐷𝑗))))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 398   = wceq 1537  wcel 2114  wne 3018  wral 3140  wrex 3141  {crab 3144  Vcvv 3496  cdif 3935  cun 3936  wss 3938  c0 4293  ifcif 4469  {csn 4569   ciun 4921   class class class wbr 5068  cmpt 5148  cres 5559  wf 6353  cfv 6357  (class class class)co 7158  cmpo 7160  m cmap 8408  Xcixp 8463  Fincfn 8511  supcsup 8906  cr 10538  0cc0 10539  1c1 10540   + caddc 10542   · cmul 10544  +∞cpnf 10674  *cxr 10676   < clt 10677  cle 10678  cmin 10872  cn 11640  +crp 12392  [,)cico 12743  [,]cicc 12744  cprod 15261  volcvol 24066  Σ^csumge0 42651
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2795  ax-rep 5192  ax-sep 5205  ax-nul 5212  ax-pow 5268  ax-pr 5332  ax-un 7463  ax-inf2 9106  ax-cnex 10595  ax-resscn 10596  ax-1cn 10597  ax-icn 10598  ax-addcl 10599  ax-addrcl 10600  ax-mulcl 10601  ax-mulrcl 10602  ax-mulcom 10603  ax-addass 10604  ax-mulass 10605  ax-distr 10606  ax-i2m1 10607  ax-1ne0 10608  ax-1rid 10609  ax-rnegex 10610  ax-rrecex 10611  ax-cnre 10612  ax-pre-lttri 10613  ax-pre-lttrn 10614  ax-pre-ltadd 10615  ax-pre-mulgt0 10616  ax-pre-sup 10617
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-fal 1550  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2802  df-cleq 2816  df-clel 2895  df-nfc 2965  df-ne 3019  df-nel 3126  df-ral 3145  df-rex 3146  df-reu 3147  df-rmo 3148  df-rab 3149  df-v 3498  df-sbc 3775  df-csb 3886  df-dif 3941  df-un 3943  df-in 3945  df-ss 3954  df-pss 3956  df-nul 4294  df-if 4470  df-pw 4543  df-sn 4570  df-pr 4572  df-tp 4574  df-op 4576  df-uni 4841  df-int 4879  df-iun 4923  df-br 5069  df-opab 5131  df-mpt 5149  df-tr 5175  df-id 5462  df-eprel 5467  df-po 5476  df-so 5477  df-fr 5516  df-se 5517  df-we 5518  df-xp 5563  df-rel 5564  df-cnv 5565  df-co 5566  df-dm 5567  df-rn 5568  df-res 5569  df-ima 5570  df-pred 6150  df-ord 6196  df-on 6197  df-lim 6198  df-suc 6199  df-iota 6316  df-fun 6359  df-fn 6360  df-f 6361  df-f1 6362  df-fo 6363  df-f1o 6364  df-fv 6365  df-isom 6366  df-riota 7116  df-ov 7161  df-oprab 7162  df-mpo 7163  df-of 7411  df-om 7583  df-1st 7691  df-2nd 7692  df-wrecs 7949  df-recs 8010  df-rdg 8048  df-1o 8104  df-2o 8105  df-oadd 8108  df-er 8291  df-map 8410  df-pm 8411  df-ixp 8464  df-en 8512  df-dom 8513  df-sdom 8514  df-fin 8515  df-fi 8877  df-sup 8908  df-inf 8909  df-oi 8976  df-dju 9332  df-card 9370  df-pnf 10679  df-mnf 10680  df-xr 10681  df-ltxr 10682  df-le 10683  df-sub 10874  df-neg 10875  df-div 11300  df-nn 11641  df-2 11703  df-3 11704  df-n0 11901  df-z 11985  df-uz 12247  df-q 12352  df-rp 12393  df-xneg 12510  df-xadd 12511  df-xmul 12512  df-ioo 12745  df-ico 12747  df-icc 12748  df-fz 12896  df-fzo 13037  df-fl 13165  df-seq 13373  df-exp 13433  df-hash 13694  df-cj 14460  df-re 14461  df-im 14462  df-sqrt 14596  df-abs 14597  df-clim 14847  df-rlim 14848  df-sum 15045  df-prod 15262  df-rest 16698  df-topgen 16719  df-psmet 20539  df-xmet 20540  df-met 20541  df-bl 20542  df-mopn 20543  df-top 21504  df-topon 21521  df-bases 21556  df-cmp 21997  df-ovol 24067  df-vol 24068  df-sumge0 42652
This theorem is referenced by:  hoidmvlelem5  42888
  Copyright terms: Public domain W3C validator