Mathbox for Glauco Siliprandi < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  hoidmvval0 Structured version   Visualization version   GIF version

Theorem hoidmvval0 41122
 Description: The dimensional volume of the (half-open interval) empty set. Definition 115A (c) of [Fremlin1] p. 29. (Contributed by Glauco Siliprandi, 21-Nov-2020.)
Hypotheses
Ref Expression
hoidmvval0.p 𝑗𝜑
hoidmvval0.l 𝐿 = (𝑥 ∈ Fin ↦ (𝑎 ∈ (ℝ ↑𝑚 𝑥), 𝑏 ∈ (ℝ ↑𝑚 𝑥) ↦ if(𝑥 = ∅, 0, ∏𝑘𝑥 (vol‘((𝑎𝑘)[,)(𝑏𝑘))))))
hoidmvval0.x (𝜑𝑋 ∈ Fin)
hoidmvval0.a (𝜑𝐴:𝑋⟶ℝ)
hoidmvval0.b (𝜑𝐵:𝑋⟶ℝ)
hoidmvval0.j (𝜑 → ∃𝑗𝑋 (𝐵𝑗) ≤ (𝐴𝑗))
Assertion
Ref Expression
hoidmvval0 (𝜑 → (𝐴(𝐿𝑋)𝐵) = 0)
Distinct variable groups:   𝐴,𝑎,𝑏,𝑘   𝐴,𝑗,𝑘   𝐵,𝑎,𝑏,𝑘   𝐵,𝑗   𝑋,𝑎,𝑏,𝑘,𝑥   𝑗,𝑋   𝜑,𝑎,𝑏,𝑘,𝑥
Allowed substitution hints:   𝜑(𝑗)   𝐴(𝑥)   𝐵(𝑥)   𝐿(𝑥,𝑗,𝑘,𝑎,𝑏)

Proof of Theorem hoidmvval0
StepHypRef Expression
1 id 22 . 2 (𝜑𝜑)
2 hoidmvval0.j . . 3 (𝜑 → ∃𝑗𝑋 (𝐵𝑗) ≤ (𝐴𝑗))
3 fveq2 6229 . . . . . 6 (𝑘 = 𝑗 → (𝐵𝑘) = (𝐵𝑗))
4 fveq2 6229 . . . . . 6 (𝑘 = 𝑗 → (𝐴𝑘) = (𝐴𝑗))
53, 4breq12d 4698 . . . . 5 (𝑘 = 𝑗 → ((𝐵𝑘) ≤ (𝐴𝑘) ↔ (𝐵𝑗) ≤ (𝐴𝑗)))
65cbvrexv 3202 . . . 4 (∃𝑘𝑋 (𝐵𝑘) ≤ (𝐴𝑘) ↔ ∃𝑗𝑋 (𝐵𝑗) ≤ (𝐴𝑗))
7 rexn0 4107 . . . 4 (∃𝑘𝑋 (𝐵𝑘) ≤ (𝐴𝑘) → 𝑋 ≠ ∅)
86, 7sylbir 225 . . 3 (∃𝑗𝑋 (𝐵𝑗) ≤ (𝐴𝑗) → 𝑋 ≠ ∅)
92, 8syl 17 . 2 (𝜑𝑋 ≠ ∅)
10 hoidmvval0.l . . . 4 𝐿 = (𝑥 ∈ Fin ↦ (𝑎 ∈ (ℝ ↑𝑚 𝑥), 𝑏 ∈ (ℝ ↑𝑚 𝑥) ↦ if(𝑥 = ∅, 0, ∏𝑘𝑥 (vol‘((𝑎𝑘)[,)(𝑏𝑘))))))
11 hoidmvval0.x . . . . 5 (𝜑𝑋 ∈ Fin)
1211adantr 480 . . . 4 ((𝜑𝑋 ≠ ∅) → 𝑋 ∈ Fin)
13 simpr 476 . . . 4 ((𝜑𝑋 ≠ ∅) → 𝑋 ≠ ∅)
14 hoidmvval0.a . . . . 5 (𝜑𝐴:𝑋⟶ℝ)
1514adantr 480 . . . 4 ((𝜑𝑋 ≠ ∅) → 𝐴:𝑋⟶ℝ)
16 hoidmvval0.b . . . . 5 (𝜑𝐵:𝑋⟶ℝ)
1716adantr 480 . . . 4 ((𝜑𝑋 ≠ ∅) → 𝐵:𝑋⟶ℝ)
1810, 12, 13, 15, 17hoidmvn0val 41119 . . 3 ((𝜑𝑋 ≠ ∅) → (𝐴(𝐿𝑋)𝐵) = ∏𝑘𝑋 (vol‘((𝐴𝑘)[,)(𝐵𝑘))))
192adantr 480 . . . 4 ((𝜑𝑋 ≠ ∅) → ∃𝑗𝑋 (𝐵𝑗) ≤ (𝐴𝑗))
20 hoidmvval0.p . . . . . 6 𝑗𝜑
21 nfv 1883 . . . . . 6 𝑗 𝑋 ≠ ∅
2220, 21nfan 1868 . . . . 5 𝑗(𝜑𝑋 ≠ ∅)
23 nfv 1883 . . . . 5 𝑗𝑘𝑋 (vol‘((𝐴𝑘)[,)(𝐵𝑘))) = 0
24 nfv 1883 . . . . . . . 8 𝑘(𝜑𝑗𝑋 ∧ (𝐵𝑗) ≤ (𝐴𝑗))
25 nfcv 2793 . . . . . . . 8 𝑘(vol‘((𝐴𝑗)[,)(𝐵𝑗)))
26113ad2ant1 1102 . . . . . . . 8 ((𝜑𝑗𝑋 ∧ (𝐵𝑗) ≤ (𝐴𝑗)) → 𝑋 ∈ Fin)
2714ffvelrnda 6399 . . . . . . . . . . 11 ((𝜑𝑘𝑋) → (𝐴𝑘) ∈ ℝ)
2816ffvelrnda 6399 . . . . . . . . . . 11 ((𝜑𝑘𝑋) → (𝐵𝑘) ∈ ℝ)
29 volicore 41116 . . . . . . . . . . 11 (((𝐴𝑘) ∈ ℝ ∧ (𝐵𝑘) ∈ ℝ) → (vol‘((𝐴𝑘)[,)(𝐵𝑘))) ∈ ℝ)
3027, 28, 29syl2anc 694 . . . . . . . . . 10 ((𝜑𝑘𝑋) → (vol‘((𝐴𝑘)[,)(𝐵𝑘))) ∈ ℝ)
3130recnd 10106 . . . . . . . . 9 ((𝜑𝑘𝑋) → (vol‘((𝐴𝑘)[,)(𝐵𝑘))) ∈ ℂ)
32313ad2antl1 1243 . . . . . . . 8 (((𝜑𝑗𝑋 ∧ (𝐵𝑗) ≤ (𝐴𝑗)) ∧ 𝑘𝑋) → (vol‘((𝐴𝑘)[,)(𝐵𝑘))) ∈ ℂ)
334, 3oveq12d 6708 . . . . . . . . 9 (𝑘 = 𝑗 → ((𝐴𝑘)[,)(𝐵𝑘)) = ((𝐴𝑗)[,)(𝐵𝑗)))
3433fveq2d 6233 . . . . . . . 8 (𝑘 = 𝑗 → (vol‘((𝐴𝑘)[,)(𝐵𝑘))) = (vol‘((𝐴𝑗)[,)(𝐵𝑗))))
35 simp2 1082 . . . . . . . 8 ((𝜑𝑗𝑋 ∧ (𝐵𝑗) ≤ (𝐴𝑗)) → 𝑗𝑋)
3614ffvelrnda 6399 . . . . . . . . . . 11 ((𝜑𝑗𝑋) → (𝐴𝑗) ∈ ℝ)
37363adant3 1101 . . . . . . . . . 10 ((𝜑𝑗𝑋 ∧ (𝐵𝑗) ≤ (𝐴𝑗)) → (𝐴𝑗) ∈ ℝ)
3816ffvelrnda 6399 . . . . . . . . . . 11 ((𝜑𝑗𝑋) → (𝐵𝑗) ∈ ℝ)
39383adant3 1101 . . . . . . . . . 10 ((𝜑𝑗𝑋 ∧ (𝐵𝑗) ≤ (𝐴𝑗)) → (𝐵𝑗) ∈ ℝ)
40 volico 40518 . . . . . . . . . 10 (((𝐴𝑗) ∈ ℝ ∧ (𝐵𝑗) ∈ ℝ) → (vol‘((𝐴𝑗)[,)(𝐵𝑗))) = if((𝐴𝑗) < (𝐵𝑗), ((𝐵𝑗) − (𝐴𝑗)), 0))
4137, 39, 40syl2anc 694 . . . . . . . . 9 ((𝜑𝑗𝑋 ∧ (𝐵𝑗) ≤ (𝐴𝑗)) → (vol‘((𝐴𝑗)[,)(𝐵𝑗))) = if((𝐴𝑗) < (𝐵𝑗), ((𝐵𝑗) − (𝐴𝑗)), 0))
42 simp3 1083 . . . . . . . . . . 11 ((𝜑𝑗𝑋 ∧ (𝐵𝑗) ≤ (𝐴𝑗)) → (𝐵𝑗) ≤ (𝐴𝑗))
4339, 37lenltd 10221 . . . . . . . . . . 11 ((𝜑𝑗𝑋 ∧ (𝐵𝑗) ≤ (𝐴𝑗)) → ((𝐵𝑗) ≤ (𝐴𝑗) ↔ ¬ (𝐴𝑗) < (𝐵𝑗)))
4442, 43mpbid 222 . . . . . . . . . 10 ((𝜑𝑗𝑋 ∧ (𝐵𝑗) ≤ (𝐴𝑗)) → ¬ (𝐴𝑗) < (𝐵𝑗))
4544iffalsed 4130 . . . . . . . . 9 ((𝜑𝑗𝑋 ∧ (𝐵𝑗) ≤ (𝐴𝑗)) → if((𝐴𝑗) < (𝐵𝑗), ((𝐵𝑗) − (𝐴𝑗)), 0) = 0)
4641, 45eqtrd 2685 . . . . . . . 8 ((𝜑𝑗𝑋 ∧ (𝐵𝑗) ≤ (𝐴𝑗)) → (vol‘((𝐴𝑗)[,)(𝐵𝑗))) = 0)
4724, 25, 26, 32, 34, 35, 46fprod0 40146 . . . . . . 7 ((𝜑𝑗𝑋 ∧ (𝐵𝑗) ≤ (𝐴𝑗)) → ∏𝑘𝑋 (vol‘((𝐴𝑘)[,)(𝐵𝑘))) = 0)
48473adant1r 1359 . . . . . 6 (((𝜑𝑋 ≠ ∅) ∧ 𝑗𝑋 ∧ (𝐵𝑗) ≤ (𝐴𝑗)) → ∏𝑘𝑋 (vol‘((𝐴𝑘)[,)(𝐵𝑘))) = 0)
49483exp 1283 . . . . 5 ((𝜑𝑋 ≠ ∅) → (𝑗𝑋 → ((𝐵𝑗) ≤ (𝐴𝑗) → ∏𝑘𝑋 (vol‘((𝐴𝑘)[,)(𝐵𝑘))) = 0)))
5022, 23, 49rexlimd 3055 . . . 4 ((𝜑𝑋 ≠ ∅) → (∃𝑗𝑋 (𝐵𝑗) ≤ (𝐴𝑗) → ∏𝑘𝑋 (vol‘((𝐴𝑘)[,)(𝐵𝑘))) = 0))
5119, 50mpd 15 . . 3 ((𝜑𝑋 ≠ ∅) → ∏𝑘𝑋 (vol‘((𝐴𝑘)[,)(𝐵𝑘))) = 0)
52 eqidd 2652 . . 3 ((𝜑𝑋 ≠ ∅) → 0 = 0)
5318, 51, 523eqtrd 2689 . 2 ((𝜑𝑋 ≠ ∅) → (𝐴(𝐿𝑋)𝐵) = 0)
541, 9, 53syl2anc 694 1 (𝜑 → (𝐴(𝐿𝑋)𝐵) = 0)
 Colors of variables: wff setvar class Syntax hints:  ¬ wn 3   → wi 4   ∧ wa 383   ∧ w3a 1054   = wceq 1523  Ⅎwnf 1748   ∈ wcel 2030   ≠ wne 2823  ∃wrex 2942  ∅c0 3948  ifcif 4119   class class class wbr 4685   ↦ cmpt 4762  ⟶wf 5922  ‘cfv 5926  (class class class)co 6690   ↦ cmpt2 6692   ↑𝑚 cmap 7899  Fincfn 7997  ℂcc 9972  ℝcr 9973  0cc0 9974   < clt 10112   ≤ cle 10113   − cmin 10304  [,)cico 12215  ∏cprod 14679  volcvol 23278 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1762  ax-4 1777  ax-5 1879  ax-6 1945  ax-7 1981  ax-8 2032  ax-9 2039  ax-10 2059  ax-11 2074  ax-12 2087  ax-13 2282  ax-ext 2631  ax-rep 4804  ax-sep 4814  ax-nul 4822  ax-pow 4873  ax-pr 4936  ax-un 6991  ax-inf2 8576  ax-cnex 10030  ax-resscn 10031  ax-1cn 10032  ax-icn 10033  ax-addcl 10034  ax-addrcl 10035  ax-mulcl 10036  ax-mulrcl 10037  ax-mulcom 10038  ax-addass 10039  ax-mulass 10040  ax-distr 10041  ax-i2m1 10042  ax-1ne0 10043  ax-1rid 10044  ax-rnegex 10045  ax-rrecex 10046  ax-cnre 10047  ax-pre-lttri 10048  ax-pre-lttrn 10049  ax-pre-ltadd 10050  ax-pre-mulgt0 10051  ax-pre-sup 10052 This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1055  df-3an 1056  df-tru 1526  df-fal 1529  df-ex 1745  df-nf 1750  df-sb 1938  df-eu 2502  df-mo 2503  df-clab 2638  df-cleq 2644  df-clel 2647  df-nfc 2782  df-ne 2824  df-nel 2927  df-ral 2946  df-rex 2947  df-reu 2948  df-rmo 2949  df-rab 2950  df-v 3233  df-sbc 3469  df-csb 3567  df-dif 3610  df-un 3612  df-in 3614  df-ss 3621  df-pss 3623  df-nul 3949  df-if 4120  df-pw 4193  df-sn 4211  df-pr 4213  df-tp 4215  df-op 4217  df-uni 4469  df-int 4508  df-iun 4554  df-br 4686  df-opab 4746  df-mpt 4763  df-tr 4786  df-id 5053  df-eprel 5058  df-po 5064  df-so 5065  df-fr 5102  df-se 5103  df-we 5104  df-xp 5149  df-rel 5150  df-cnv 5151  df-co 5152  df-dm 5153  df-rn 5154  df-res 5155  df-ima 5156  df-pred 5718  df-ord 5764  df-on 5765  df-lim 5766  df-suc 5767  df-iota 5889  df-fun 5928  df-fn 5929  df-f 5930  df-f1 5931  df-fo 5932  df-f1o 5933  df-fv 5934  df-isom 5935  df-riota 6651  df-ov 6693  df-oprab 6694  df-mpt2 6695  df-of 6939  df-om 7108  df-1st 7210  df-2nd 7211  df-wrecs 7452  df-recs 7513  df-rdg 7551  df-1o 7605  df-2o 7606  df-oadd 7609  df-er 7787  df-map 7901  df-pm 7902  df-en 7998  df-dom 7999  df-sdom 8000  df-fin 8001  df-fi 8358  df-sup 8389  df-inf 8390  df-oi 8456  df-card 8803  df-cda 9028  df-pnf 10114  df-mnf 10115  df-xr 10116  df-ltxr 10117  df-le 10118  df-sub 10306  df-neg 10307  df-div 10723  df-nn 11059  df-2 11117  df-3 11118  df-n0 11331  df-z 11416  df-uz 11726  df-q 11827  df-rp 11871  df-xneg 11984  df-xadd 11985  df-xmul 11986  df-ioo 12217  df-ico 12219  df-icc 12220  df-fz 12365  df-fzo 12505  df-fl 12633  df-seq 12842  df-exp 12901  df-hash 13158  df-cj 13883  df-re 13884  df-im 13885  df-sqrt 14019  df-abs 14020  df-clim 14263  df-rlim 14264  df-sum 14461  df-prod 14680  df-rest 16130  df-topgen 16151  df-psmet 19786  df-xmet 19787  df-met 19788  df-bl 19789  df-mopn 19790  df-top 20747  df-topon 20764  df-bases 20798  df-cmp 21238  df-ovol 23279  df-vol 23280 This theorem is referenced by:  hoidmvval0b  41125  hoidmvlelem5  41134
 Copyright terms: Public domain W3C validator