Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  hoiqssbl Structured version   Visualization version   GIF version

Theorem hoiqssbl 39316
Description: A n-dimensional ball contains a non-empty half-open interval with vertices with rational components. (Contributed by Glauco Siliprandi, 24-Dec-2020.)
Hypotheses
Ref Expression
hoiqssbl.x (𝜑𝑋 ∈ Fin)
hoiqssbl.y (𝜑𝑌 ∈ (ℝ ↑𝑚 𝑋))
hoiqssbl.e (𝜑𝐸 ∈ ℝ+)
Assertion
Ref Expression
hoiqssbl (𝜑 → ∃𝑐 ∈ (ℚ ↑𝑚 𝑋)∃𝑑 ∈ (ℚ ↑𝑚 𝑋)(𝑌X𝑖𝑋 ((𝑐𝑖)[,)(𝑑𝑖)) ∧ X𝑖𝑋 ((𝑐𝑖)[,)(𝑑𝑖)) ⊆ (𝑌(ball‘(dist‘(ℝ^‘𝑋)))𝐸)))
Distinct variable groups:   𝐸,𝑐,𝑑,𝑖   𝑋,𝑐,𝑑,𝑖   𝑌,𝑐,𝑑,𝑖   𝜑,𝑐,𝑑,𝑖

Proof of Theorem hoiqssbl
StepHypRef Expression
1 0ex 4710 . . . . . . 7 ∅ ∈ V
21snid 4151 . . . . . 6 ∅ ∈ {∅}
32a1i 11 . . . . 5 ((𝜑𝑋 = ∅) → ∅ ∈ {∅})
4 hoiqssbl.y . . . . . . . . 9 (𝜑𝑌 ∈ (ℝ ↑𝑚 𝑋))
54adantr 479 . . . . . . . 8 ((𝜑𝑋 = ∅) → 𝑌 ∈ (ℝ ↑𝑚 𝑋))
6 oveq2 6532 . . . . . . . . . 10 (𝑋 = ∅ → (ℝ ↑𝑚 𝑋) = (ℝ ↑𝑚 ∅))
7 reex 9880 . . . . . . . . . . . 12 ℝ ∈ V
8 mapdm0 38178 . . . . . . . . . . . 12 (ℝ ∈ V → (ℝ ↑𝑚 ∅) = {∅})
97, 8ax-mp 5 . . . . . . . . . . 11 (ℝ ↑𝑚 ∅) = {∅}
109a1i 11 . . . . . . . . . 10 (𝑋 = ∅ → (ℝ ↑𝑚 ∅) = {∅})
116, 10eqtrd 2640 . . . . . . . . 9 (𝑋 = ∅ → (ℝ ↑𝑚 𝑋) = {∅})
1211adantl 480 . . . . . . . 8 ((𝜑𝑋 = ∅) → (ℝ ↑𝑚 𝑋) = {∅})
135, 12eleqtrd 2686 . . . . . . 7 ((𝜑𝑋 = ∅) → 𝑌 ∈ {∅})
14 0fin 8047 . . . . . . . . . . . . 13 ∅ ∈ Fin
15 eqid 2606 . . . . . . . . . . . . . 14 (dist‘(ℝ^‘∅)) = (dist‘(ℝ^‘∅))
1615rrxmetfi 38984 . . . . . . . . . . . . 13 (∅ ∈ Fin → (dist‘(ℝ^‘∅)) ∈ (Met‘(ℝ ↑𝑚 ∅)))
1714, 16ax-mp 5 . . . . . . . . . . . 12 (dist‘(ℝ^‘∅)) ∈ (Met‘(ℝ ↑𝑚 ∅))
18 metxmet 21887 . . . . . . . . . . . 12 ((dist‘(ℝ^‘∅)) ∈ (Met‘(ℝ ↑𝑚 ∅)) → (dist‘(ℝ^‘∅)) ∈ (∞Met‘(ℝ ↑𝑚 ∅)))
1917, 18ax-mp 5 . . . . . . . . . . 11 (dist‘(ℝ^‘∅)) ∈ (∞Met‘(ℝ ↑𝑚 ∅))
2019a1i 11 . . . . . . . . . 10 ((𝜑𝑋 = ∅) → (dist‘(ℝ^‘∅)) ∈ (∞Met‘(ℝ ↑𝑚 ∅)))
213, 9syl6eleqr 2695 . . . . . . . . . 10 ((𝜑𝑋 = ∅) → ∅ ∈ (ℝ ↑𝑚 ∅))
22 hoiqssbl.e . . . . . . . . . . 11 (𝜑𝐸 ∈ ℝ+)
2322adantr 479 . . . . . . . . . 10 ((𝜑𝑋 = ∅) → 𝐸 ∈ ℝ+)
24 blcntr 21966 . . . . . . . . . 10 (((dist‘(ℝ^‘∅)) ∈ (∞Met‘(ℝ ↑𝑚 ∅)) ∧ ∅ ∈ (ℝ ↑𝑚 ∅) ∧ 𝐸 ∈ ℝ+) → ∅ ∈ (∅(ball‘(dist‘(ℝ^‘∅)))𝐸))
2520, 21, 23, 24syl3anc 1317 . . . . . . . . 9 ((𝜑𝑋 = ∅) → ∅ ∈ (∅(ball‘(dist‘(ℝ^‘∅)))𝐸))
26 elsni 4138 . . . . . . . . . . . 12 (𝑌 ∈ {∅} → 𝑌 = ∅)
2713, 26syl 17 . . . . . . . . . . 11 ((𝜑𝑋 = ∅) → 𝑌 = ∅)
2827eqcomd 2612 . . . . . . . . . 10 ((𝜑𝑋 = ∅) → ∅ = 𝑌)
2928oveq1d 6539 . . . . . . . . 9 ((𝜑𝑋 = ∅) → (∅(ball‘(dist‘(ℝ^‘∅)))𝐸) = (𝑌(ball‘(dist‘(ℝ^‘∅)))𝐸))
3025, 29eleqtrd 2686 . . . . . . . 8 ((𝜑𝑋 = ∅) → ∅ ∈ (𝑌(ball‘(dist‘(ℝ^‘∅)))𝐸))
3130snssd 4277 . . . . . . 7 ((𝜑𝑋 = ∅) → {∅} ⊆ (𝑌(ball‘(dist‘(ℝ^‘∅)))𝐸))
3213, 31jca 552 . . . . . 6 ((𝜑𝑋 = ∅) → (𝑌 ∈ {∅} ∧ {∅} ⊆ (𝑌(ball‘(dist‘(ℝ^‘∅)))𝐸)))
33 biidd 250 . . . . . . 7 (𝑑 = ∅ → ((𝑌 ∈ {∅} ∧ {∅} ⊆ (𝑌(ball‘(dist‘(ℝ^‘∅)))𝐸)) ↔ (𝑌 ∈ {∅} ∧ {∅} ⊆ (𝑌(ball‘(dist‘(ℝ^‘∅)))𝐸))))
3433rspcev 3278 . . . . . 6 ((∅ ∈ {∅} ∧ (𝑌 ∈ {∅} ∧ {∅} ⊆ (𝑌(ball‘(dist‘(ℝ^‘∅)))𝐸))) → ∃𝑑 ∈ {∅} (𝑌 ∈ {∅} ∧ {∅} ⊆ (𝑌(ball‘(dist‘(ℝ^‘∅)))𝐸)))
353, 32, 34syl2anc 690 . . . . 5 ((𝜑𝑋 = ∅) → ∃𝑑 ∈ {∅} (𝑌 ∈ {∅} ∧ {∅} ⊆ (𝑌(ball‘(dist‘(ℝ^‘∅)))𝐸)))
36 biidd 250 . . . . . 6 (𝑐 = ∅ → (∃𝑑 ∈ {∅} (𝑌 ∈ {∅} ∧ {∅} ⊆ (𝑌(ball‘(dist‘(ℝ^‘∅)))𝐸)) ↔ ∃𝑑 ∈ {∅} (𝑌 ∈ {∅} ∧ {∅} ⊆ (𝑌(ball‘(dist‘(ℝ^‘∅)))𝐸))))
3736rspcev 3278 . . . . 5 ((∅ ∈ {∅} ∧ ∃𝑑 ∈ {∅} (𝑌 ∈ {∅} ∧ {∅} ⊆ (𝑌(ball‘(dist‘(ℝ^‘∅)))𝐸))) → ∃𝑐 ∈ {∅}∃𝑑 ∈ {∅} (𝑌 ∈ {∅} ∧ {∅} ⊆ (𝑌(ball‘(dist‘(ℝ^‘∅)))𝐸)))
383, 35, 37syl2anc 690 . . . 4 ((𝜑𝑋 = ∅) → ∃𝑐 ∈ {∅}∃𝑑 ∈ {∅} (𝑌 ∈ {∅} ∧ {∅} ⊆ (𝑌(ball‘(dist‘(ℝ^‘∅)))𝐸)))
39 oveq2 6532 . . . . . . . . . 10 (𝑋 = ∅ → (ℚ ↑𝑚 𝑋) = (ℚ ↑𝑚 ∅))
40 qex 11629 . . . . . . . . . . . 12 ℚ ∈ V
41 mapdm0 38178 . . . . . . . . . . . 12 (ℚ ∈ V → (ℚ ↑𝑚 ∅) = {∅})
4240, 41ax-mp 5 . . . . . . . . . . 11 (ℚ ↑𝑚 ∅) = {∅}
4342a1i 11 . . . . . . . . . 10 (𝑋 = ∅ → (ℚ ↑𝑚 ∅) = {∅})
4439, 43eqtr2d 2641 . . . . . . . . 9 (𝑋 = ∅ → {∅} = (ℚ ↑𝑚 𝑋))
4544eqcomd 2612 . . . . . . . 8 (𝑋 = ∅ → (ℚ ↑𝑚 𝑋) = {∅})
4645eleq2d 2669 . . . . . . 7 (𝑋 = ∅ → (𝑐 ∈ (ℚ ↑𝑚 𝑋) ↔ 𝑐 ∈ {∅}))
4745eleq2d 2669 . . . . . . . . 9 (𝑋 = ∅ → (𝑑 ∈ (ℚ ↑𝑚 𝑋) ↔ 𝑑 ∈ {∅}))
4847anbi1d 736 . . . . . . . 8 (𝑋 = ∅ → ((𝑑 ∈ (ℚ ↑𝑚 𝑋) ∧ (𝑌 ∈ {∅} ∧ {∅} ⊆ (𝑌(ball‘(dist‘(ℝ^‘∅)))𝐸))) ↔ (𝑑 ∈ {∅} ∧ (𝑌 ∈ {∅} ∧ {∅} ⊆ (𝑌(ball‘(dist‘(ℝ^‘∅)))𝐸)))))
4948rexbidv2 3026 . . . . . . 7 (𝑋 = ∅ → (∃𝑑 ∈ (ℚ ↑𝑚 𝑋)(𝑌 ∈ {∅} ∧ {∅} ⊆ (𝑌(ball‘(dist‘(ℝ^‘∅)))𝐸)) ↔ ∃𝑑 ∈ {∅} (𝑌 ∈ {∅} ∧ {∅} ⊆ (𝑌(ball‘(dist‘(ℝ^‘∅)))𝐸))))
5046, 49anbi12d 742 . . . . . 6 (𝑋 = ∅ → ((𝑐 ∈ (ℚ ↑𝑚 𝑋) ∧ ∃𝑑 ∈ (ℚ ↑𝑚 𝑋)(𝑌 ∈ {∅} ∧ {∅} ⊆ (𝑌(ball‘(dist‘(ℝ^‘∅)))𝐸))) ↔ (𝑐 ∈ {∅} ∧ ∃𝑑 ∈ {∅} (𝑌 ∈ {∅} ∧ {∅} ⊆ (𝑌(ball‘(dist‘(ℝ^‘∅)))𝐸)))))
5150rexbidv2 3026 . . . . 5 (𝑋 = ∅ → (∃𝑐 ∈ (ℚ ↑𝑚 𝑋)∃𝑑 ∈ (ℚ ↑𝑚 𝑋)(𝑌 ∈ {∅} ∧ {∅} ⊆ (𝑌(ball‘(dist‘(ℝ^‘∅)))𝐸)) ↔ ∃𝑐 ∈ {∅}∃𝑑 ∈ {∅} (𝑌 ∈ {∅} ∧ {∅} ⊆ (𝑌(ball‘(dist‘(ℝ^‘∅)))𝐸))))
5251adantl 480 . . . 4 ((𝜑𝑋 = ∅) → (∃𝑐 ∈ (ℚ ↑𝑚 𝑋)∃𝑑 ∈ (ℚ ↑𝑚 𝑋)(𝑌 ∈ {∅} ∧ {∅} ⊆ (𝑌(ball‘(dist‘(ℝ^‘∅)))𝐸)) ↔ ∃𝑐 ∈ {∅}∃𝑑 ∈ {∅} (𝑌 ∈ {∅} ∧ {∅} ⊆ (𝑌(ball‘(dist‘(ℝ^‘∅)))𝐸))))
5338, 52mpbird 245 . . 3 ((𝜑𝑋 = ∅) → ∃𝑐 ∈ (ℚ ↑𝑚 𝑋)∃𝑑 ∈ (ℚ ↑𝑚 𝑋)(𝑌 ∈ {∅} ∧ {∅} ⊆ (𝑌(ball‘(dist‘(ℝ^‘∅)))𝐸)))
54 ixpeq1 7779 . . . . . . . . 9 (𝑋 = ∅ → X𝑖𝑋 ((𝑐𝑖)[,)(𝑑𝑖)) = X𝑖 ∈ ∅ ((𝑐𝑖)[,)(𝑑𝑖)))
55 ixp0x 7796 . . . . . . . . . 10 X𝑖 ∈ ∅ ((𝑐𝑖)[,)(𝑑𝑖)) = {∅}
5655a1i 11 . . . . . . . . 9 (𝑋 = ∅ → X𝑖 ∈ ∅ ((𝑐𝑖)[,)(𝑑𝑖)) = {∅})
5754, 56eqtrd 2640 . . . . . . . 8 (𝑋 = ∅ → X𝑖𝑋 ((𝑐𝑖)[,)(𝑑𝑖)) = {∅})
5857eleq2d 2669 . . . . . . 7 (𝑋 = ∅ → (𝑌X𝑖𝑋 ((𝑐𝑖)[,)(𝑑𝑖)) ↔ 𝑌 ∈ {∅}))
59 fveq2 6085 . . . . . . . . . . 11 (𝑋 = ∅ → (ℝ^‘𝑋) = (ℝ^‘∅))
6059fveq2d 6089 . . . . . . . . . 10 (𝑋 = ∅ → (dist‘(ℝ^‘𝑋)) = (dist‘(ℝ^‘∅)))
6160fveq2d 6089 . . . . . . . . 9 (𝑋 = ∅ → (ball‘(dist‘(ℝ^‘𝑋))) = (ball‘(dist‘(ℝ^‘∅))))
6261oveqd 6541 . . . . . . . 8 (𝑋 = ∅ → (𝑌(ball‘(dist‘(ℝ^‘𝑋)))𝐸) = (𝑌(ball‘(dist‘(ℝ^‘∅)))𝐸))
6357, 62sseq12d 3593 . . . . . . 7 (𝑋 = ∅ → (X𝑖𝑋 ((𝑐𝑖)[,)(𝑑𝑖)) ⊆ (𝑌(ball‘(dist‘(ℝ^‘𝑋)))𝐸) ↔ {∅} ⊆ (𝑌(ball‘(dist‘(ℝ^‘∅)))𝐸)))
6458, 63anbi12d 742 . . . . . 6 (𝑋 = ∅ → ((𝑌X𝑖𝑋 ((𝑐𝑖)[,)(𝑑𝑖)) ∧ X𝑖𝑋 ((𝑐𝑖)[,)(𝑑𝑖)) ⊆ (𝑌(ball‘(dist‘(ℝ^‘𝑋)))𝐸)) ↔ (𝑌 ∈ {∅} ∧ {∅} ⊆ (𝑌(ball‘(dist‘(ℝ^‘∅)))𝐸))))
6564rexbidv 3030 . . . . 5 (𝑋 = ∅ → (∃𝑑 ∈ (ℚ ↑𝑚 𝑋)(𝑌X𝑖𝑋 ((𝑐𝑖)[,)(𝑑𝑖)) ∧ X𝑖𝑋 ((𝑐𝑖)[,)(𝑑𝑖)) ⊆ (𝑌(ball‘(dist‘(ℝ^‘𝑋)))𝐸)) ↔ ∃𝑑 ∈ (ℚ ↑𝑚 𝑋)(𝑌 ∈ {∅} ∧ {∅} ⊆ (𝑌(ball‘(dist‘(ℝ^‘∅)))𝐸))))
6665rexbidv 3030 . . . 4 (𝑋 = ∅ → (∃𝑐 ∈ (ℚ ↑𝑚 𝑋)∃𝑑 ∈ (ℚ ↑𝑚 𝑋)(𝑌X𝑖𝑋 ((𝑐𝑖)[,)(𝑑𝑖)) ∧ X𝑖𝑋 ((𝑐𝑖)[,)(𝑑𝑖)) ⊆ (𝑌(ball‘(dist‘(ℝ^‘𝑋)))𝐸)) ↔ ∃𝑐 ∈ (ℚ ↑𝑚 𝑋)∃𝑑 ∈ (ℚ ↑𝑚 𝑋)(𝑌 ∈ {∅} ∧ {∅} ⊆ (𝑌(ball‘(dist‘(ℝ^‘∅)))𝐸))))
6766adantl 480 . . 3 ((𝜑𝑋 = ∅) → (∃𝑐 ∈ (ℚ ↑𝑚 𝑋)∃𝑑 ∈ (ℚ ↑𝑚 𝑋)(𝑌X𝑖𝑋 ((𝑐𝑖)[,)(𝑑𝑖)) ∧ X𝑖𝑋 ((𝑐𝑖)[,)(𝑑𝑖)) ⊆ (𝑌(ball‘(dist‘(ℝ^‘𝑋)))𝐸)) ↔ ∃𝑐 ∈ (ℚ ↑𝑚 𝑋)∃𝑑 ∈ (ℚ ↑𝑚 𝑋)(𝑌 ∈ {∅} ∧ {∅} ⊆ (𝑌(ball‘(dist‘(ℝ^‘∅)))𝐸))))
6853, 67mpbird 245 . 2 ((𝜑𝑋 = ∅) → ∃𝑐 ∈ (ℚ ↑𝑚 𝑋)∃𝑑 ∈ (ℚ ↑𝑚 𝑋)(𝑌X𝑖𝑋 ((𝑐𝑖)[,)(𝑑𝑖)) ∧ X𝑖𝑋 ((𝑐𝑖)[,)(𝑑𝑖)) ⊆ (𝑌(ball‘(dist‘(ℝ^‘𝑋)))𝐸)))
69 hoiqssbl.x . . . 4 (𝜑𝑋 ∈ Fin)
7069adantr 479 . . 3 ((𝜑 ∧ ¬ 𝑋 = ∅) → 𝑋 ∈ Fin)
71 neqne 2786 . . . 4 𝑋 = ∅ → 𝑋 ≠ ∅)
7271adantl 480 . . 3 ((𝜑 ∧ ¬ 𝑋 = ∅) → 𝑋 ≠ ∅)
734adantr 479 . . 3 ((𝜑 ∧ ¬ 𝑋 = ∅) → 𝑌 ∈ (ℝ ↑𝑚 𝑋))
7422adantr 479 . . 3 ((𝜑 ∧ ¬ 𝑋 = ∅) → 𝐸 ∈ ℝ+)
7570, 72, 73, 74hoiqssbllem3 39315 . 2 ((𝜑 ∧ ¬ 𝑋 = ∅) → ∃𝑐 ∈ (ℚ ↑𝑚 𝑋)∃𝑑 ∈ (ℚ ↑𝑚 𝑋)(𝑌X𝑖𝑋 ((𝑐𝑖)[,)(𝑑𝑖)) ∧ X𝑖𝑋 ((𝑐𝑖)[,)(𝑑𝑖)) ⊆ (𝑌(ball‘(dist‘(ℝ^‘𝑋)))𝐸)))
7668, 75pm2.61dan 827 1 (𝜑 → ∃𝑐 ∈ (ℚ ↑𝑚 𝑋)∃𝑑 ∈ (ℚ ↑𝑚 𝑋)(𝑌X𝑖𝑋 ((𝑐𝑖)[,)(𝑑𝑖)) ∧ X𝑖𝑋 ((𝑐𝑖)[,)(𝑑𝑖)) ⊆ (𝑌(ball‘(dist‘(ℝ^‘𝑋)))𝐸)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 194  wa 382   = wceq 1474  wcel 1976  wne 2776  wrex 2893  Vcvv 3169  wss 3536  c0 3870  {csn 4121  cfv 5787  (class class class)co 6524  𝑚 cmap 7718  Xcixp 7768  Fincfn 7815  cr 9788  cq 11617  +crp 11661  [,)cico 12001  distcds 15720  ∞Metcxmt 19495  Metcme 19496  ballcbl 19497  ℝ^crrx 22893
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1712  ax-4 1727  ax-5 1826  ax-6 1874  ax-7 1921  ax-8 1978  ax-9 1985  ax-10 2005  ax-11 2020  ax-12 2032  ax-13 2229  ax-ext 2586  ax-rep 4690  ax-sep 4700  ax-nul 4709  ax-pow 4761  ax-pr 4825  ax-un 6821  ax-inf2 8395  ax-cnex 9845  ax-resscn 9846  ax-1cn 9847  ax-icn 9848  ax-addcl 9849  ax-addrcl 9850  ax-mulcl 9851  ax-mulrcl 9852  ax-mulcom 9853  ax-addass 9854  ax-mulass 9855  ax-distr 9856  ax-i2m1 9857  ax-1ne0 9858  ax-1rid 9859  ax-rnegex 9860  ax-rrecex 9861  ax-cnre 9862  ax-pre-lttri 9863  ax-pre-lttrn 9864  ax-pre-ltadd 9865  ax-pre-mulgt0 9866  ax-pre-sup 9867  ax-addf 9868  ax-mulf 9869
This theorem depends on definitions:  df-bi 195  df-or 383  df-an 384  df-3or 1031  df-3an 1032  df-tru 1477  df-fal 1480  df-ex 1695  df-nf 1700  df-sb 1867  df-eu 2458  df-mo 2459  df-clab 2593  df-cleq 2599  df-clel 2602  df-nfc 2736  df-ne 2778  df-nel 2779  df-ral 2897  df-rex 2898  df-reu 2899  df-rmo 2900  df-rab 2901  df-v 3171  df-sbc 3399  df-csb 3496  df-dif 3539  df-un 3541  df-in 3543  df-ss 3550  df-pss 3552  df-nul 3871  df-if 4033  df-pw 4106  df-sn 4122  df-pr 4124  df-tp 4126  df-op 4128  df-uni 4364  df-int 4402  df-iun 4448  df-br 4575  df-opab 4635  df-mpt 4636  df-tr 4672  df-eprel 4936  df-id 4940  df-po 4946  df-so 4947  df-fr 4984  df-se 4985  df-we 4986  df-xp 5031  df-rel 5032  df-cnv 5033  df-co 5034  df-dm 5035  df-rn 5036  df-res 5037  df-ima 5038  df-pred 5580  df-ord 5626  df-on 5627  df-lim 5628  df-suc 5629  df-iota 5751  df-fun 5789  df-fn 5790  df-f 5791  df-f1 5792  df-fo 5793  df-f1o 5794  df-fv 5795  df-isom 5796  df-riota 6486  df-ov 6527  df-oprab 6528  df-mpt2 6529  df-of 6769  df-om 6932  df-1st 7033  df-2nd 7034  df-supp 7157  df-tpos 7213  df-wrecs 7268  df-recs 7329  df-rdg 7367  df-1o 7421  df-oadd 7425  df-er 7603  df-map 7720  df-ixp 7769  df-en 7816  df-dom 7817  df-sdom 7818  df-fin 7819  df-fsupp 8133  df-sup 8205  df-inf 8206  df-oi 8272  df-card 8622  df-pnf 9929  df-mnf 9930  df-xr 9931  df-ltxr 9932  df-le 9933  df-sub 10116  df-neg 10117  df-div 10531  df-nn 10865  df-2 10923  df-3 10924  df-4 10925  df-5 10926  df-6 10927  df-7 10928  df-8 10929  df-9 10930  df-n0 11137  df-z 11208  df-dec 11323  df-uz 11517  df-q 11618  df-rp 11662  df-xadd 11776  df-ioo 12003  df-ico 12005  df-fz 12150  df-fzo 12287  df-seq 12616  df-exp 12675  df-hash 12932  df-cj 13630  df-re 13631  df-im 13632  df-sqrt 13766  df-abs 13767  df-clim 14010  df-sum 14208  df-struct 15640  df-ndx 15641  df-slot 15642  df-base 15643  df-sets 15644  df-ress 15645  df-plusg 15724  df-mulr 15725  df-starv 15726  df-sca 15727  df-vsca 15728  df-ip 15729  df-tset 15730  df-ple 15731  df-ds 15734  df-unif 15735  df-hom 15736  df-cco 15737  df-0g 15868  df-gsum 15869  df-prds 15874  df-pws 15876  df-mgm 17008  df-sgrp 17050  df-mnd 17061  df-mhm 17101  df-grp 17191  df-minusg 17192  df-sbg 17193  df-subg 17357  df-ghm 17424  df-cntz 17516  df-cmn 17961  df-abl 17962  df-mgp 18256  df-ur 18268  df-ring 18315  df-cring 18316  df-oppr 18389  df-dvdsr 18407  df-unit 18408  df-invr 18438  df-dvr 18449  df-rnghom 18481  df-drng 18515  df-field 18516  df-subrg 18544  df-staf 18611  df-srng 18612  df-lmod 18631  df-lss 18697  df-sra 18936  df-rgmod 18937  df-psmet 19502  df-xmet 19503  df-met 19504  df-bl 19505  df-cnfld 19511  df-refld 19712  df-dsmm 19834  df-frlm 19849  df-nm 22135  df-tng 22137  df-tch 22698  df-rrx 22895
This theorem is referenced by:  opnvonmbllem2  39324
  Copyright terms: Public domain W3C validator