Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  hoiqssbllem1 Structured version   Visualization version   GIF version

Theorem hoiqssbllem1 42911
Description: The center of the n-dimensional ball belongs to the half-open interval. (Contributed by Glauco Siliprandi, 24-Dec-2020.)
Hypotheses
Ref Expression
hoiqssbllem1.i 𝑖𝜑
hoiqssbllem1.x (𝜑𝑋 ∈ Fin)
hoiqssbllem1.n (𝜑𝑋 ≠ ∅)
hoiqssbllem1.y (𝜑𝑌 ∈ (ℝ ↑m 𝑋))
hoiqssbllem1.c (𝜑𝐶:𝑋⟶ℝ)
hoiqssbllem1.d (𝜑𝐷:𝑋⟶ℝ)
hoiqssbllem1.e (𝜑𝐸 ∈ ℝ+)
hoiqssbllem1.l ((𝜑𝑖𝑋) → (𝐶𝑖) ∈ (((𝑌𝑖) − (𝐸 / (2 · (√‘(♯‘𝑋)))))(,)(𝑌𝑖)))
hoiqssbllem1.r ((𝜑𝑖𝑋) → (𝐷𝑖) ∈ ((𝑌𝑖)(,)((𝑌𝑖) + (𝐸 / (2 · (√‘(♯‘𝑋)))))))
Assertion
Ref Expression
hoiqssbllem1 (𝜑𝑌X𝑖𝑋 ((𝐶𝑖)[,)(𝐷𝑖)))
Distinct variable groups:   𝑖,𝑋   𝑖,𝑌
Allowed substitution hints:   𝜑(𝑖)   𝐶(𝑖)   𝐷(𝑖)   𝐸(𝑖)

Proof of Theorem hoiqssbllem1
StepHypRef Expression
1 hoiqssbllem1.y . . . 4 (𝜑𝑌 ∈ (ℝ ↑m 𝑋))
21elexd 3516 . . 3 (𝜑𝑌 ∈ V)
3 elmapfn 8431 . . . 4 (𝑌 ∈ (ℝ ↑m 𝑋) → 𝑌 Fn 𝑋)
41, 3syl 17 . . 3 (𝜑𝑌 Fn 𝑋)
5 hoiqssbllem1.i . . . 4 𝑖𝜑
6 hoiqssbllem1.c . . . . . . . 8 (𝜑𝐶:𝑋⟶ℝ)
76ffvelrnda 6853 . . . . . . 7 ((𝜑𝑖𝑋) → (𝐶𝑖) ∈ ℝ)
87rexrd 10693 . . . . . 6 ((𝜑𝑖𝑋) → (𝐶𝑖) ∈ ℝ*)
9 hoiqssbllem1.d . . . . . . . 8 (𝜑𝐷:𝑋⟶ℝ)
109ffvelrnda 6853 . . . . . . 7 ((𝜑𝑖𝑋) → (𝐷𝑖) ∈ ℝ)
1110rexrd 10693 . . . . . 6 ((𝜑𝑖𝑋) → (𝐷𝑖) ∈ ℝ*)
12 elmapi 8430 . . . . . . . . 9 (𝑌 ∈ (ℝ ↑m 𝑋) → 𝑌:𝑋⟶ℝ)
131, 12syl 17 . . . . . . . 8 (𝜑𝑌:𝑋⟶ℝ)
1413ffvelrnda 6853 . . . . . . 7 ((𝜑𝑖𝑋) → (𝑌𝑖) ∈ ℝ)
1514rexrd 10693 . . . . . 6 ((𝜑𝑖𝑋) → (𝑌𝑖) ∈ ℝ*)
16 hoiqssbllem1.e . . . . . . . . . . . . 13 (𝜑𝐸 ∈ ℝ+)
17 2rp 12397 . . . . . . . . . . . . . . 15 2 ∈ ℝ+
1817a1i 11 . . . . . . . . . . . . . 14 (𝜑 → 2 ∈ ℝ+)
19 hoiqssbllem1.n . . . . . . . . . . . . . . . . . 18 (𝜑𝑋 ≠ ∅)
20 hoiqssbllem1.x . . . . . . . . . . . . . . . . . . 19 (𝜑𝑋 ∈ Fin)
21 hashnncl 13730 . . . . . . . . . . . . . . . . . . 19 (𝑋 ∈ Fin → ((♯‘𝑋) ∈ ℕ ↔ 𝑋 ≠ ∅))
2220, 21syl 17 . . . . . . . . . . . . . . . . . 18 (𝜑 → ((♯‘𝑋) ∈ ℕ ↔ 𝑋 ≠ ∅))
2319, 22mpbird 259 . . . . . . . . . . . . . . . . 17 (𝜑 → (♯‘𝑋) ∈ ℕ)
2423nnred 11655 . . . . . . . . . . . . . . . 16 (𝜑 → (♯‘𝑋) ∈ ℝ)
2523nngt0d 11689 . . . . . . . . . . . . . . . 16 (𝜑 → 0 < (♯‘𝑋))
2624, 25elrpd 12431 . . . . . . . . . . . . . . 15 (𝜑 → (♯‘𝑋) ∈ ℝ+)
2726rpsqrtcld 14773 . . . . . . . . . . . . . 14 (𝜑 → (√‘(♯‘𝑋)) ∈ ℝ+)
2818, 27rpmulcld 12450 . . . . . . . . . . . . 13 (𝜑 → (2 · (√‘(♯‘𝑋))) ∈ ℝ+)
2916, 28rpdivcld 12451 . . . . . . . . . . . 12 (𝜑 → (𝐸 / (2 · (√‘(♯‘𝑋)))) ∈ ℝ+)
3029rpred 12434 . . . . . . . . . . 11 (𝜑 → (𝐸 / (2 · (√‘(♯‘𝑋)))) ∈ ℝ)
3130adantr 483 . . . . . . . . . 10 ((𝜑𝑖𝑋) → (𝐸 / (2 · (√‘(♯‘𝑋)))) ∈ ℝ)
3214, 31resubcld 11070 . . . . . . . . 9 ((𝜑𝑖𝑋) → ((𝑌𝑖) − (𝐸 / (2 · (√‘(♯‘𝑋))))) ∈ ℝ)
3332rexrd 10693 . . . . . . . 8 ((𝜑𝑖𝑋) → ((𝑌𝑖) − (𝐸 / (2 · (√‘(♯‘𝑋))))) ∈ ℝ*)
34 hoiqssbllem1.l . . . . . . . 8 ((𝜑𝑖𝑋) → (𝐶𝑖) ∈ (((𝑌𝑖) − (𝐸 / (2 · (√‘(♯‘𝑋)))))(,)(𝑌𝑖)))
35 iooltub 41793 . . . . . . . 8 ((((𝑌𝑖) − (𝐸 / (2 · (√‘(♯‘𝑋))))) ∈ ℝ* ∧ (𝑌𝑖) ∈ ℝ* ∧ (𝐶𝑖) ∈ (((𝑌𝑖) − (𝐸 / (2 · (√‘(♯‘𝑋)))))(,)(𝑌𝑖))) → (𝐶𝑖) < (𝑌𝑖))
3633, 15, 34, 35syl3anc 1367 . . . . . . 7 ((𝜑𝑖𝑋) → (𝐶𝑖) < (𝑌𝑖))
377, 14, 36ltled 10790 . . . . . 6 ((𝜑𝑖𝑋) → (𝐶𝑖) ≤ (𝑌𝑖))
3814, 31readdcld 10672 . . . . . . . 8 ((𝜑𝑖𝑋) → ((𝑌𝑖) + (𝐸 / (2 · (√‘(♯‘𝑋))))) ∈ ℝ)
3938rexrd 10693 . . . . . . 7 ((𝜑𝑖𝑋) → ((𝑌𝑖) + (𝐸 / (2 · (√‘(♯‘𝑋))))) ∈ ℝ*)
40 hoiqssbllem1.r . . . . . . 7 ((𝜑𝑖𝑋) → (𝐷𝑖) ∈ ((𝑌𝑖)(,)((𝑌𝑖) + (𝐸 / (2 · (√‘(♯‘𝑋)))))))
41 ioogtlb 41777 . . . . . . 7 (((𝑌𝑖) ∈ ℝ* ∧ ((𝑌𝑖) + (𝐸 / (2 · (√‘(♯‘𝑋))))) ∈ ℝ* ∧ (𝐷𝑖) ∈ ((𝑌𝑖)(,)((𝑌𝑖) + (𝐸 / (2 · (√‘(♯‘𝑋))))))) → (𝑌𝑖) < (𝐷𝑖))
4215, 39, 40, 41syl3anc 1367 . . . . . 6 ((𝜑𝑖𝑋) → (𝑌𝑖) < (𝐷𝑖))
438, 11, 15, 37, 42elicod 12790 . . . . 5 ((𝜑𝑖𝑋) → (𝑌𝑖) ∈ ((𝐶𝑖)[,)(𝐷𝑖)))
4443ex 415 . . . 4 (𝜑 → (𝑖𝑋 → (𝑌𝑖) ∈ ((𝐶𝑖)[,)(𝐷𝑖))))
455, 44ralrimi 3218 . . 3 (𝜑 → ∀𝑖𝑋 (𝑌𝑖) ∈ ((𝐶𝑖)[,)(𝐷𝑖)))
462, 4, 453jca 1124 . 2 (𝜑 → (𝑌 ∈ V ∧ 𝑌 Fn 𝑋 ∧ ∀𝑖𝑋 (𝑌𝑖) ∈ ((𝐶𝑖)[,)(𝐷𝑖))))
47 elixp2 8467 . 2 (𝑌X𝑖𝑋 ((𝐶𝑖)[,)(𝐷𝑖)) ↔ (𝑌 ∈ V ∧ 𝑌 Fn 𝑋 ∧ ∀𝑖𝑋 (𝑌𝑖) ∈ ((𝐶𝑖)[,)(𝐷𝑖))))
4846, 47sylibr 236 1 (𝜑𝑌X𝑖𝑋 ((𝐶𝑖)[,)(𝐷𝑖)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wa 398  w3a 1083  wnf 1784  wcel 2114  wne 3018  wral 3140  Vcvv 3496  c0 4293   class class class wbr 5068   Fn wfn 6352  wf 6353  cfv 6357  (class class class)co 7158  m cmap 8408  Xcixp 8463  Fincfn 8511  cr 10538   + caddc 10542   · cmul 10544  *cxr 10676   < clt 10677  cmin 10872   / cdiv 11299  cn 11640  2c2 11695  +crp 12392  (,)cioo 12741  [,)cico 12743  chash 13693  csqrt 14594
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2795  ax-sep 5205  ax-nul 5212  ax-pow 5268  ax-pr 5332  ax-un 7463  ax-cnex 10595  ax-resscn 10596  ax-1cn 10597  ax-icn 10598  ax-addcl 10599  ax-addrcl 10600  ax-mulcl 10601  ax-mulrcl 10602  ax-mulcom 10603  ax-addass 10604  ax-mulass 10605  ax-distr 10606  ax-i2m1 10607  ax-1ne0 10608  ax-1rid 10609  ax-rnegex 10610  ax-rrecex 10611  ax-cnre 10612  ax-pre-lttri 10613  ax-pre-lttrn 10614  ax-pre-ltadd 10615  ax-pre-mulgt0 10616  ax-pre-sup 10617
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2802  df-cleq 2816  df-clel 2895  df-nfc 2965  df-ne 3019  df-nel 3126  df-ral 3145  df-rex 3146  df-reu 3147  df-rmo 3148  df-rab 3149  df-v 3498  df-sbc 3775  df-csb 3886  df-dif 3941  df-un 3943  df-in 3945  df-ss 3954  df-pss 3956  df-nul 4294  df-if 4470  df-pw 4543  df-sn 4570  df-pr 4572  df-tp 4574  df-op 4576  df-uni 4841  df-int 4879  df-iun 4923  df-br 5069  df-opab 5131  df-mpt 5149  df-tr 5175  df-id 5462  df-eprel 5467  df-po 5476  df-so 5477  df-fr 5516  df-we 5518  df-xp 5563  df-rel 5564  df-cnv 5565  df-co 5566  df-dm 5567  df-rn 5568  df-res 5569  df-ima 5570  df-pred 6150  df-ord 6196  df-on 6197  df-lim 6198  df-suc 6199  df-iota 6316  df-fun 6359  df-fn 6360  df-f 6361  df-f1 6362  df-fo 6363  df-f1o 6364  df-fv 6365  df-riota 7116  df-ov 7161  df-oprab 7162  df-mpo 7163  df-om 7583  df-1st 7691  df-2nd 7692  df-wrecs 7949  df-recs 8010  df-rdg 8048  df-1o 8104  df-er 8291  df-map 8410  df-ixp 8464  df-en 8512  df-dom 8513  df-sdom 8514  df-fin 8515  df-sup 8908  df-card 9370  df-pnf 10679  df-mnf 10680  df-xr 10681  df-ltxr 10682  df-le 10683  df-sub 10874  df-neg 10875  df-div 11300  df-nn 11641  df-2 11703  df-3 11704  df-n0 11901  df-z 11985  df-uz 12247  df-rp 12393  df-ioo 12745  df-ico 12747  df-fz 12896  df-seq 13373  df-exp 13433  df-hash 13694  df-cj 14460  df-re 14461  df-im 14462  df-sqrt 14596
This theorem is referenced by:  hoiqssbllem3  42913
  Copyright terms: Public domain W3C validator