Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  hoiqssbllem2 Structured version   Visualization version   GIF version

Theorem hoiqssbllem2 42912
Description: The center of the n-dimensional ball belongs to the half-open interval. (Contributed by Glauco Siliprandi, 24-Dec-2020.)
Hypotheses
Ref Expression
hoiqssbllem2.i 𝑖𝜑
hoiqssbllem2.x (𝜑𝑋 ∈ Fin)
hoiqssbllem2.n (𝜑𝑋 ≠ ∅)
hoiqssbllem2.y (𝜑𝑌 ∈ (ℝ ↑m 𝑋))
hoiqssbllem2.c (𝜑𝐶:𝑋⟶ℝ)
hoiqssbllem2.d (𝜑𝐷:𝑋⟶ℝ)
hoiqssbllem2.e (𝜑𝐸 ∈ ℝ+)
hoiqssbllem2.l ((𝜑𝑖𝑋) → (𝐶𝑖) ∈ (((𝑌𝑖) − (𝐸 / (2 · (√‘(♯‘𝑋)))))(,)(𝑌𝑖)))
hoiqssbllem2.r ((𝜑𝑖𝑋) → (𝐷𝑖) ∈ ((𝑌𝑖)(,)((𝑌𝑖) + (𝐸 / (2 · (√‘(♯‘𝑋)))))))
Assertion
Ref Expression
hoiqssbllem2 (𝜑X𝑖𝑋 ((𝐶𝑖)[,)(𝐷𝑖)) ⊆ (𝑌(ball‘(dist‘(ℝ^‘𝑋)))𝐸))
Distinct variable groups:   𝐶,𝑖   𝐷,𝑖   𝑖,𝐸   𝑖,𝑋   𝑖,𝑌   𝜑,𝑖

Proof of Theorem hoiqssbllem2
Dummy variables 𝑓 𝑔 𝑗 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 hoiqssbllem2.x . . . . . . . . 9 (𝜑𝑋 ∈ Fin)
2 eqid 2823 . . . . . . . . . 10 (ℝ^‘𝑋) = (ℝ^‘𝑋)
3 eqid 2823 . . . . . . . . . 10 (ℝ ↑m 𝑋) = (ℝ ↑m 𝑋)
42, 3rrxdsfi 24016 . . . . . . . . 9 (𝑋 ∈ Fin → (dist‘(ℝ^‘𝑋)) = (𝑔 ∈ (ℝ ↑m 𝑋), ∈ (ℝ ↑m 𝑋) ↦ (√‘Σ𝑖𝑋 (((𝑔𝑖) − (𝑖))↑2))))
51, 4syl 17 . . . . . . . 8 (𝜑 → (dist‘(ℝ^‘𝑋)) = (𝑔 ∈ (ℝ ↑m 𝑋), ∈ (ℝ ↑m 𝑋) ↦ (√‘Σ𝑖𝑋 (((𝑔𝑖) − (𝑖))↑2))))
65adantr 483 . . . . . . 7 ((𝜑𝑓X𝑖𝑋 ((𝐶𝑖)[,)(𝐷𝑖))) → (dist‘(ℝ^‘𝑋)) = (𝑔 ∈ (ℝ ↑m 𝑋), ∈ (ℝ ↑m 𝑋) ↦ (√‘Σ𝑖𝑋 (((𝑔𝑖) − (𝑖))↑2))))
7 fveq1 6671 . . . . . . . . . . . . 13 (𝑔 = 𝑌 → (𝑔𝑖) = (𝑌𝑖))
87adantr 483 . . . . . . . . . . . 12 ((𝑔 = 𝑌 = 𝑓) → (𝑔𝑖) = (𝑌𝑖))
9 fveq1 6671 . . . . . . . . . . . . 13 ( = 𝑓 → (𝑖) = (𝑓𝑖))
109adantl 484 . . . . . . . . . . . 12 ((𝑔 = 𝑌 = 𝑓) → (𝑖) = (𝑓𝑖))
118, 10oveq12d 7176 . . . . . . . . . . 11 ((𝑔 = 𝑌 = 𝑓) → ((𝑔𝑖) − (𝑖)) = ((𝑌𝑖) − (𝑓𝑖)))
1211oveq1d 7173 . . . . . . . . . 10 ((𝑔 = 𝑌 = 𝑓) → (((𝑔𝑖) − (𝑖))↑2) = (((𝑌𝑖) − (𝑓𝑖))↑2))
1312sumeq2sdv 15063 . . . . . . . . 9 ((𝑔 = 𝑌 = 𝑓) → Σ𝑖𝑋 (((𝑔𝑖) − (𝑖))↑2) = Σ𝑖𝑋 (((𝑌𝑖) − (𝑓𝑖))↑2))
1413fveq2d 6676 . . . . . . . 8 ((𝑔 = 𝑌 = 𝑓) → (√‘Σ𝑖𝑋 (((𝑔𝑖) − (𝑖))↑2)) = (√‘Σ𝑖𝑋 (((𝑌𝑖) − (𝑓𝑖))↑2)))
1514adantl 484 . . . . . . 7 (((𝜑𝑓X𝑖𝑋 ((𝐶𝑖)[,)(𝐷𝑖))) ∧ (𝑔 = 𝑌 = 𝑓)) → (√‘Σ𝑖𝑋 (((𝑔𝑖) − (𝑖))↑2)) = (√‘Σ𝑖𝑋 (((𝑌𝑖) − (𝑓𝑖))↑2)))
16 hoiqssbllem2.y . . . . . . . 8 (𝜑𝑌 ∈ (ℝ ↑m 𝑋))
1716adantr 483 . . . . . . 7 ((𝜑𝑓X𝑖𝑋 ((𝐶𝑖)[,)(𝐷𝑖))) → 𝑌 ∈ (ℝ ↑m 𝑋))
18 hoiqssbllem2.i . . . . . . . . . 10 𝑖𝜑
19 hoiqssbllem2.c . . . . . . . . . . 11 (𝜑𝐶:𝑋⟶ℝ)
2019ffvelrnda 6853 . . . . . . . . . 10 ((𝜑𝑖𝑋) → (𝐶𝑖) ∈ ℝ)
21 hoiqssbllem2.d . . . . . . . . . . . 12 (𝜑𝐷:𝑋⟶ℝ)
2221ffvelrnda 6853 . . . . . . . . . . 11 ((𝜑𝑖𝑋) → (𝐷𝑖) ∈ ℝ)
2322rexrd 10693 . . . . . . . . . 10 ((𝜑𝑖𝑋) → (𝐷𝑖) ∈ ℝ*)
2418, 20, 23hoissrrn2 42867 . . . . . . . . 9 (𝜑X𝑖𝑋 ((𝐶𝑖)[,)(𝐷𝑖)) ⊆ (ℝ ↑m 𝑋))
2524adantr 483 . . . . . . . 8 ((𝜑𝑓X𝑖𝑋 ((𝐶𝑖)[,)(𝐷𝑖))) → X𝑖𝑋 ((𝐶𝑖)[,)(𝐷𝑖)) ⊆ (ℝ ↑m 𝑋))
26 simpr 487 . . . . . . . 8 ((𝜑𝑓X𝑖𝑋 ((𝐶𝑖)[,)(𝐷𝑖))) → 𝑓X𝑖𝑋 ((𝐶𝑖)[,)(𝐷𝑖)))
2725, 26sseldd 3970 . . . . . . 7 ((𝜑𝑓X𝑖𝑋 ((𝐶𝑖)[,)(𝐷𝑖))) → 𝑓 ∈ (ℝ ↑m 𝑋))
28 fvexd 6687 . . . . . . 7 ((𝜑𝑓X𝑖𝑋 ((𝐶𝑖)[,)(𝐷𝑖))) → (√‘Σ𝑖𝑋 (((𝑌𝑖) − (𝑓𝑖))↑2)) ∈ V)
296, 15, 17, 27, 28ovmpod 7304 . . . . . 6 ((𝜑𝑓X𝑖𝑋 ((𝐶𝑖)[,)(𝐷𝑖))) → (𝑌(dist‘(ℝ^‘𝑋))𝑓) = (√‘Σ𝑖𝑋 (((𝑌𝑖) − (𝑓𝑖))↑2)))
30 nfcv 2979 . . . . . . . . . 10 𝑖𝑓
31 nfixp1 8484 . . . . . . . . . 10 𝑖X𝑖𝑋 ((𝐶𝑖)[,)(𝐷𝑖))
3230, 31nfel 2994 . . . . . . . . 9 𝑖 𝑓X𝑖𝑋 ((𝐶𝑖)[,)(𝐷𝑖))
3318, 32nfan 1900 . . . . . . . 8 𝑖(𝜑𝑓X𝑖𝑋 ((𝐶𝑖)[,)(𝐷𝑖)))
34 simpl 485 . . . . . . . . 9 ((𝜑𝑓X𝑖𝑋 ((𝐶𝑖)[,)(𝐷𝑖))) → 𝜑)
3534, 1syl 17 . . . . . . . 8 ((𝜑𝑓X𝑖𝑋 ((𝐶𝑖)[,)(𝐷𝑖))) → 𝑋 ∈ Fin)
36 elmapi 8430 . . . . . . . . . . . . 13 (𝑌 ∈ (ℝ ↑m 𝑋) → 𝑌:𝑋⟶ℝ)
3716, 36syl 17 . . . . . . . . . . . 12 (𝜑𝑌:𝑋⟶ℝ)
3837ffvelrnda 6853 . . . . . . . . . . 11 ((𝜑𝑖𝑋) → (𝑌𝑖) ∈ ℝ)
3934, 38sylan 582 . . . . . . . . . 10 (((𝜑𝑓X𝑖𝑋 ((𝐶𝑖)[,)(𝐷𝑖))) ∧ 𝑖𝑋) → (𝑌𝑖) ∈ ℝ)
40 icossre 12820 . . . . . . . . . . . . 13 (((𝐶𝑖) ∈ ℝ ∧ (𝐷𝑖) ∈ ℝ*) → ((𝐶𝑖)[,)(𝐷𝑖)) ⊆ ℝ)
4120, 23, 40syl2anc 586 . . . . . . . . . . . 12 ((𝜑𝑖𝑋) → ((𝐶𝑖)[,)(𝐷𝑖)) ⊆ ℝ)
4241adantlr 713 . . . . . . . . . . 11 (((𝜑𝑓X𝑖𝑋 ((𝐶𝑖)[,)(𝐷𝑖))) ∧ 𝑖𝑋) → ((𝐶𝑖)[,)(𝐷𝑖)) ⊆ ℝ)
43 fvixp2 41468 . . . . . . . . . . . 12 ((𝑓X𝑖𝑋 ((𝐶𝑖)[,)(𝐷𝑖)) ∧ 𝑖𝑋) → (𝑓𝑖) ∈ ((𝐶𝑖)[,)(𝐷𝑖)))
4443adantll 712 . . . . . . . . . . 11 (((𝜑𝑓X𝑖𝑋 ((𝐶𝑖)[,)(𝐷𝑖))) ∧ 𝑖𝑋) → (𝑓𝑖) ∈ ((𝐶𝑖)[,)(𝐷𝑖)))
4542, 44sseldd 3970 . . . . . . . . . 10 (((𝜑𝑓X𝑖𝑋 ((𝐶𝑖)[,)(𝐷𝑖))) ∧ 𝑖𝑋) → (𝑓𝑖) ∈ ℝ)
4639, 45resubcld 11070 . . . . . . . . 9 (((𝜑𝑓X𝑖𝑋 ((𝐶𝑖)[,)(𝐷𝑖))) ∧ 𝑖𝑋) → ((𝑌𝑖) − (𝑓𝑖)) ∈ ℝ)
47 2nn0 11917 . . . . . . . . . 10 2 ∈ ℕ0
4847a1i 11 . . . . . . . . 9 (((𝜑𝑓X𝑖𝑋 ((𝐶𝑖)[,)(𝐷𝑖))) ∧ 𝑖𝑋) → 2 ∈ ℕ0)
4946, 48reexpcld 13530 . . . . . . . 8 (((𝜑𝑓X𝑖𝑋 ((𝐶𝑖)[,)(𝐷𝑖))) ∧ 𝑖𝑋) → (((𝑌𝑖) − (𝑓𝑖))↑2) ∈ ℝ)
5033, 35, 49fsumreclf 41864 . . . . . . 7 ((𝜑𝑓X𝑖𝑋 ((𝐶𝑖)[,)(𝐷𝑖))) → Σ𝑖𝑋 (((𝑌𝑖) − (𝑓𝑖))↑2) ∈ ℝ)
51 fveq2 6672 . . . . . . . . . . . . 13 (𝑖 = 𝑗 → (𝐶𝑖) = (𝐶𝑗))
52 fveq2 6672 . . . . . . . . . . . . 13 (𝑖 = 𝑗 → (𝐷𝑖) = (𝐷𝑗))
5351, 52oveq12d 7176 . . . . . . . . . . . 12 (𝑖 = 𝑗 → ((𝐶𝑖)[,)(𝐷𝑖)) = ((𝐶𝑗)[,)(𝐷𝑗)))
5453cbvixpv 8481 . . . . . . . . . . 11 X𝑖𝑋 ((𝐶𝑖)[,)(𝐷𝑖)) = X𝑗𝑋 ((𝐶𝑗)[,)(𝐷𝑗))
5554eleq2i 2906 . . . . . . . . . 10 (𝑓X𝑖𝑋 ((𝐶𝑖)[,)(𝐷𝑖)) ↔ 𝑓X𝑗𝑋 ((𝐶𝑗)[,)(𝐷𝑗)))
5655biimpi 218 . . . . . . . . 9 (𝑓X𝑖𝑋 ((𝐶𝑖)[,)(𝐷𝑖)) → 𝑓X𝑗𝑋 ((𝐶𝑗)[,)(𝐷𝑗)))
5756adantl 484 . . . . . . . 8 ((𝜑𝑓X𝑖𝑋 ((𝐶𝑖)[,)(𝐷𝑖))) → 𝑓X𝑗𝑋 ((𝐶𝑗)[,)(𝐷𝑗)))
581adantr 483 . . . . . . . . 9 ((𝜑𝑓X𝑗𝑋 ((𝐶𝑗)[,)(𝐷𝑗))) → 𝑋 ∈ Fin)
59 simpll 765 . . . . . . . . . 10 (((𝜑𝑓X𝑗𝑋 ((𝐶𝑗)[,)(𝐷𝑗))) ∧ 𝑖𝑋) → 𝜑)
6055biimpri 230 . . . . . . . . . . 11 (𝑓X𝑗𝑋 ((𝐶𝑗)[,)(𝐷𝑗)) → 𝑓X𝑖𝑋 ((𝐶𝑖)[,)(𝐷𝑖)))
6160ad2antlr 725 . . . . . . . . . 10 (((𝜑𝑓X𝑗𝑋 ((𝐶𝑗)[,)(𝐷𝑗))) ∧ 𝑖𝑋) → 𝑓X𝑖𝑋 ((𝐶𝑖)[,)(𝐷𝑖)))
62 simpr 487 . . . . . . . . . 10 (((𝜑𝑓X𝑗𝑋 ((𝐶𝑗)[,)(𝐷𝑗))) ∧ 𝑖𝑋) → 𝑖𝑋)
6359, 61, 62, 49syl21anc 835 . . . . . . . . 9 (((𝜑𝑓X𝑗𝑋 ((𝐶𝑗)[,)(𝐷𝑗))) ∧ 𝑖𝑋) → (((𝑌𝑖) − (𝑓𝑖))↑2) ∈ ℝ)
6446sqge0d 13615 . . . . . . . . . 10 (((𝜑𝑓X𝑖𝑋 ((𝐶𝑖)[,)(𝐷𝑖))) ∧ 𝑖𝑋) → 0 ≤ (((𝑌𝑖) − (𝑓𝑖))↑2))
6559, 61, 62, 64syl21anc 835 . . . . . . . . 9 (((𝜑𝑓X𝑗𝑋 ((𝐶𝑗)[,)(𝐷𝑗))) ∧ 𝑖𝑋) → 0 ≤ (((𝑌𝑖) − (𝑓𝑖))↑2))
6658, 63, 65fsumge0 15152 . . . . . . . 8 ((𝜑𝑓X𝑗𝑋 ((𝐶𝑗)[,)(𝐷𝑗))) → 0 ≤ Σ𝑖𝑋 (((𝑌𝑖) − (𝑓𝑖))↑2))
6734, 57, 66syl2anc 586 . . . . . . 7 ((𝜑𝑓X𝑖𝑋 ((𝐶𝑖)[,)(𝐷𝑖))) → 0 ≤ Σ𝑖𝑋 (((𝑌𝑖) − (𝑓𝑖))↑2))
6850, 67resqrtcld 14779 . . . . . 6 ((𝜑𝑓X𝑖𝑋 ((𝐶𝑖)[,)(𝐷𝑖))) → (√‘Σ𝑖𝑋 (((𝑌𝑖) − (𝑓𝑖))↑2)) ∈ ℝ)
6929, 68eqeltrd 2915 . . . . 5 ((𝜑𝑓X𝑖𝑋 ((𝐶𝑖)[,)(𝐷𝑖))) → (𝑌(dist‘(ℝ^‘𝑋))𝑓) ∈ ℝ)
7022, 20resubcld 11070 . . . . . . . . 9 ((𝜑𝑖𝑋) → ((𝐷𝑖) − (𝐶𝑖)) ∈ ℝ)
7170resqcld 13614 . . . . . . . 8 ((𝜑𝑖𝑋) → (((𝐷𝑖) − (𝐶𝑖))↑2) ∈ ℝ)
721, 71fsumrecl 15093 . . . . . . 7 (𝜑 → Σ𝑖𝑋 (((𝐷𝑖) − (𝐶𝑖))↑2) ∈ ℝ)
7370sqge0d 13615 . . . . . . . 8 ((𝜑𝑖𝑋) → 0 ≤ (((𝐷𝑖) − (𝐶𝑖))↑2))
741, 71, 73fsumge0 15152 . . . . . . 7 (𝜑 → 0 ≤ Σ𝑖𝑋 (((𝐷𝑖) − (𝐶𝑖))↑2))
7572, 74resqrtcld 14779 . . . . . 6 (𝜑 → (√‘Σ𝑖𝑋 (((𝐷𝑖) − (𝐶𝑖))↑2)) ∈ ℝ)
7675adantr 483 . . . . 5 ((𝜑𝑓X𝑖𝑋 ((𝐶𝑖)[,)(𝐷𝑖))) → (√‘Σ𝑖𝑋 (((𝐷𝑖) − (𝐶𝑖))↑2)) ∈ ℝ)
77 hoiqssbllem2.e . . . . . . 7 (𝜑𝐸 ∈ ℝ+)
7877rpred 12434 . . . . . 6 (𝜑𝐸 ∈ ℝ)
7978adantr 483 . . . . 5 ((𝜑𝑓X𝑖𝑋 ((𝐶𝑖)[,)(𝐷𝑖))) → 𝐸 ∈ ℝ)
80 hoiqssbllem2.n . . . . . . . . . 10 (𝜑𝑋 ≠ ∅)
8180adantr 483 . . . . . . . . 9 ((𝜑𝑓X𝑗𝑋 ((𝐶𝑗)[,)(𝐷𝑗))) → 𝑋 ≠ ∅)
8271adantlr 713 . . . . . . . . 9 (((𝜑𝑓X𝑗𝑋 ((𝐶𝑗)[,)(𝐷𝑗))) ∧ 𝑖𝑋) → (((𝐷𝑖) − (𝐶𝑖))↑2) ∈ ℝ)
8334, 22sylan 582 . . . . . . . . . . . 12 (((𝜑𝑓X𝑖𝑋 ((𝐶𝑖)[,)(𝐷𝑖))) ∧ 𝑖𝑋) → (𝐷𝑖) ∈ ℝ)
8434, 20sylan 582 . . . . . . . . . . . 12 (((𝜑𝑓X𝑖𝑋 ((𝐶𝑖)[,)(𝐷𝑖))) ∧ 𝑖𝑋) → (𝐶𝑖) ∈ ℝ)
8583, 84resubcld 11070 . . . . . . . . . . 11 (((𝜑𝑓X𝑖𝑋 ((𝐶𝑖)[,)(𝐷𝑖))) ∧ 𝑖𝑋) → ((𝐷𝑖) − (𝐶𝑖)) ∈ ℝ)
8620rexrd 10693 . . . . . . . . . . . . . . 15 ((𝜑𝑖𝑋) → (𝐶𝑖) ∈ ℝ*)
8738rexrd 10693 . . . . . . . . . . . . . . 15 ((𝜑𝑖𝑋) → (𝑌𝑖) ∈ ℝ*)
88 2rp 12397 . . . . . . . . . . . . . . . . . . . . . . . 24 2 ∈ ℝ+
8988a1i 11 . . . . . . . . . . . . . . . . . . . . . . 23 (𝜑 → 2 ∈ ℝ+)
90 hashnncl 13730 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝑋 ∈ Fin → ((♯‘𝑋) ∈ ℕ ↔ 𝑋 ≠ ∅))
911, 90syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝜑 → ((♯‘𝑋) ∈ ℕ ↔ 𝑋 ≠ ∅))
9280, 91mpbird 259 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝜑 → (♯‘𝑋) ∈ ℕ)
9392nnred 11655 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝜑 → (♯‘𝑋) ∈ ℝ)
9492nngt0d 11689 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝜑 → 0 < (♯‘𝑋))
9593, 94elrpd 12431 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝜑 → (♯‘𝑋) ∈ ℝ+)
9695rpsqrtcld 14773 . . . . . . . . . . . . . . . . . . . . . . 23 (𝜑 → (√‘(♯‘𝑋)) ∈ ℝ+)
9789, 96rpmulcld 12450 . . . . . . . . . . . . . . . . . . . . . 22 (𝜑 → (2 · (√‘(♯‘𝑋))) ∈ ℝ+)
9877, 97rpdivcld 12451 . . . . . . . . . . . . . . . . . . . . 21 (𝜑 → (𝐸 / (2 · (√‘(♯‘𝑋)))) ∈ ℝ+)
9998rpred 12434 . . . . . . . . . . . . . . . . . . . 20 (𝜑 → (𝐸 / (2 · (√‘(♯‘𝑋)))) ∈ ℝ)
10099adantr 483 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑖𝑋) → (𝐸 / (2 · (√‘(♯‘𝑋)))) ∈ ℝ)
10138, 100resubcld 11070 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑖𝑋) → ((𝑌𝑖) − (𝐸 / (2 · (√‘(♯‘𝑋))))) ∈ ℝ)
102101rexrd 10693 . . . . . . . . . . . . . . . . 17 ((𝜑𝑖𝑋) → ((𝑌𝑖) − (𝐸 / (2 · (√‘(♯‘𝑋))))) ∈ ℝ*)
103 hoiqssbllem2.l . . . . . . . . . . . . . . . . 17 ((𝜑𝑖𝑋) → (𝐶𝑖) ∈ (((𝑌𝑖) − (𝐸 / (2 · (√‘(♯‘𝑋)))))(,)(𝑌𝑖)))
104 iooltub 41793 . . . . . . . . . . . . . . . . 17 ((((𝑌𝑖) − (𝐸 / (2 · (√‘(♯‘𝑋))))) ∈ ℝ* ∧ (𝑌𝑖) ∈ ℝ* ∧ (𝐶𝑖) ∈ (((𝑌𝑖) − (𝐸 / (2 · (√‘(♯‘𝑋)))))(,)(𝑌𝑖))) → (𝐶𝑖) < (𝑌𝑖))
105102, 87, 103, 104syl3anc 1367 . . . . . . . . . . . . . . . 16 ((𝜑𝑖𝑋) → (𝐶𝑖) < (𝑌𝑖))
10620, 38, 105ltled 10790 . . . . . . . . . . . . . . 15 ((𝜑𝑖𝑋) → (𝐶𝑖) ≤ (𝑌𝑖))
10738, 100readdcld 10672 . . . . . . . . . . . . . . . . 17 ((𝜑𝑖𝑋) → ((𝑌𝑖) + (𝐸 / (2 · (√‘(♯‘𝑋))))) ∈ ℝ)
108107rexrd 10693 . . . . . . . . . . . . . . . 16 ((𝜑𝑖𝑋) → ((𝑌𝑖) + (𝐸 / (2 · (√‘(♯‘𝑋))))) ∈ ℝ*)
109 hoiqssbllem2.r . . . . . . . . . . . . . . . 16 ((𝜑𝑖𝑋) → (𝐷𝑖) ∈ ((𝑌𝑖)(,)((𝑌𝑖) + (𝐸 / (2 · (√‘(♯‘𝑋)))))))
110 ioogtlb 41777 . . . . . . . . . . . . . . . 16 (((𝑌𝑖) ∈ ℝ* ∧ ((𝑌𝑖) + (𝐸 / (2 · (√‘(♯‘𝑋))))) ∈ ℝ* ∧ (𝐷𝑖) ∈ ((𝑌𝑖)(,)((𝑌𝑖) + (𝐸 / (2 · (√‘(♯‘𝑋))))))) → (𝑌𝑖) < (𝐷𝑖))
11187, 108, 109, 110syl3anc 1367 . . . . . . . . . . . . . . 15 ((𝜑𝑖𝑋) → (𝑌𝑖) < (𝐷𝑖))
11286, 23, 87, 106, 111elicod 12790 . . . . . . . . . . . . . 14 ((𝜑𝑖𝑋) → (𝑌𝑖) ∈ ((𝐶𝑖)[,)(𝐷𝑖)))
11334, 112sylan 582 . . . . . . . . . . . . 13 (((𝜑𝑓X𝑖𝑋 ((𝐶𝑖)[,)(𝐷𝑖))) ∧ 𝑖𝑋) → (𝑌𝑖) ∈ ((𝐶𝑖)[,)(𝐷𝑖)))
114 icodiamlt 14797 . . . . . . . . . . . . 13 ((((𝐶𝑖) ∈ ℝ ∧ (𝐷𝑖) ∈ ℝ) ∧ ((𝑌𝑖) ∈ ((𝐶𝑖)[,)(𝐷𝑖)) ∧ (𝑓𝑖) ∈ ((𝐶𝑖)[,)(𝐷𝑖)))) → (abs‘((𝑌𝑖) − (𝑓𝑖))) < ((𝐷𝑖) − (𝐶𝑖)))
11584, 83, 113, 44, 114syl22anc 836 . . . . . . . . . . . 12 (((𝜑𝑓X𝑖𝑋 ((𝐶𝑖)[,)(𝐷𝑖))) ∧ 𝑖𝑋) → (abs‘((𝑌𝑖) − (𝑓𝑖))) < ((𝐷𝑖) − (𝐶𝑖)))
116 0red 10646 . . . . . . . . . . . . . . . 16 ((𝜑𝑖𝑋) → 0 ∈ ℝ)
11720, 38, 22, 106, 111lelttrd 10800 . . . . . . . . . . . . . . . . 17 ((𝜑𝑖𝑋) → (𝐶𝑖) < (𝐷𝑖))
11820, 22posdifd 11229 . . . . . . . . . . . . . . . . 17 ((𝜑𝑖𝑋) → ((𝐶𝑖) < (𝐷𝑖) ↔ 0 < ((𝐷𝑖) − (𝐶𝑖))))
119117, 118mpbid 234 . . . . . . . . . . . . . . . 16 ((𝜑𝑖𝑋) → 0 < ((𝐷𝑖) − (𝐶𝑖)))
120116, 70, 119ltled 10790 . . . . . . . . . . . . . . 15 ((𝜑𝑖𝑋) → 0 ≤ ((𝐷𝑖) − (𝐶𝑖)))
12170, 120absidd 14784 . . . . . . . . . . . . . 14 ((𝜑𝑖𝑋) → (abs‘((𝐷𝑖) − (𝐶𝑖))) = ((𝐷𝑖) − (𝐶𝑖)))
122121eqcomd 2829 . . . . . . . . . . . . 13 ((𝜑𝑖𝑋) → ((𝐷𝑖) − (𝐶𝑖)) = (abs‘((𝐷𝑖) − (𝐶𝑖))))
123122adantlr 713 . . . . . . . . . . . 12 (((𝜑𝑓X𝑖𝑋 ((𝐶𝑖)[,)(𝐷𝑖))) ∧ 𝑖𝑋) → ((𝐷𝑖) − (𝐶𝑖)) = (abs‘((𝐷𝑖) − (𝐶𝑖))))
124115, 123breqtrd 5094 . . . . . . . . . . 11 (((𝜑𝑓X𝑖𝑋 ((𝐶𝑖)[,)(𝐷𝑖))) ∧ 𝑖𝑋) → (abs‘((𝑌𝑖) − (𝑓𝑖))) < (abs‘((𝐷𝑖) − (𝐶𝑖))))
12546, 85, 124abslt2sqd 41635 . . . . . . . . . 10 (((𝜑𝑓X𝑖𝑋 ((𝐶𝑖)[,)(𝐷𝑖))) ∧ 𝑖𝑋) → (((𝑌𝑖) − (𝑓𝑖))↑2) < (((𝐷𝑖) − (𝐶𝑖))↑2))
12659, 61, 62, 125syl21anc 835 . . . . . . . . 9 (((𝜑𝑓X𝑗𝑋 ((𝐶𝑗)[,)(𝐷𝑗))) ∧ 𝑖𝑋) → (((𝑌𝑖) − (𝑓𝑖))↑2) < (((𝐷𝑖) − (𝐶𝑖))↑2))
12758, 81, 63, 82, 126fsumlt 15157 . . . . . . . 8 ((𝜑𝑓X𝑗𝑋 ((𝐶𝑗)[,)(𝐷𝑗))) → Σ𝑖𝑋 (((𝑌𝑖) − (𝑓𝑖))↑2) < Σ𝑖𝑋 (((𝐷𝑖) − (𝐶𝑖))↑2))
12834, 57, 127syl2anc 586 . . . . . . 7 ((𝜑𝑓X𝑖𝑋 ((𝐶𝑖)[,)(𝐷𝑖))) → Σ𝑖𝑋 (((𝑌𝑖) − (𝑓𝑖))↑2) < Σ𝑖𝑋 (((𝐷𝑖) − (𝐶𝑖))↑2))
12934, 72syl 17 . . . . . . . 8 ((𝜑𝑓X𝑖𝑋 ((𝐶𝑖)[,)(𝐷𝑖))) → Σ𝑖𝑋 (((𝐷𝑖) − (𝐶𝑖))↑2) ∈ ℝ)
13034, 74syl 17 . . . . . . . 8 ((𝜑𝑓X𝑖𝑋 ((𝐶𝑖)[,)(𝐷𝑖))) → 0 ≤ Σ𝑖𝑋 (((𝐷𝑖) − (𝐶𝑖))↑2))
13150, 67, 129, 130sqrtltd 14789 . . . . . . 7 ((𝜑𝑓X𝑖𝑋 ((𝐶𝑖)[,)(𝐷𝑖))) → (Σ𝑖𝑋 (((𝑌𝑖) − (𝑓𝑖))↑2) < Σ𝑖𝑋 (((𝐷𝑖) − (𝐶𝑖))↑2) ↔ (√‘Σ𝑖𝑋 (((𝑌𝑖) − (𝑓𝑖))↑2)) < (√‘Σ𝑖𝑋 (((𝐷𝑖) − (𝐶𝑖))↑2))))
132128, 131mpbid 234 . . . . . 6 ((𝜑𝑓X𝑖𝑋 ((𝐶𝑖)[,)(𝐷𝑖))) → (√‘Σ𝑖𝑋 (((𝑌𝑖) − (𝑓𝑖))↑2)) < (√‘Σ𝑖𝑋 (((𝐷𝑖) − (𝐶𝑖))↑2)))
13329, 132eqbrtrd 5090 . . . . 5 ((𝜑𝑓X𝑖𝑋 ((𝐶𝑖)[,)(𝐷𝑖))) → (𝑌(dist‘(ℝ^‘𝑋))𝑓) < (√‘Σ𝑖𝑋 (((𝐷𝑖) − (𝐶𝑖))↑2)))
13478, 96rerpdivcld 12465 . . . . . . . . . . 11 (𝜑 → (𝐸 / (√‘(♯‘𝑋))) ∈ ℝ)
135134resqcld 13614 . . . . . . . . . 10 (𝜑 → ((𝐸 / (√‘(♯‘𝑋)))↑2) ∈ ℝ)
136135adantr 483 . . . . . . . . 9 ((𝜑𝑖𝑋) → ((𝐸 / (√‘(♯‘𝑋)))↑2) ∈ ℝ)
13722, 20jca 514 . . . . . . . . . . . . 13 ((𝜑𝑖𝑋) → ((𝐷𝑖) ∈ ℝ ∧ (𝐶𝑖) ∈ ℝ))
138107, 101jca 514 . . . . . . . . . . . . 13 ((𝜑𝑖𝑋) → (((𝑌𝑖) + (𝐸 / (2 · (√‘(♯‘𝑋))))) ∈ ℝ ∧ ((𝑌𝑖) − (𝐸 / (2 · (√‘(♯‘𝑋))))) ∈ ℝ))
139137, 138jca 514 . . . . . . . . . . . 12 ((𝜑𝑖𝑋) → (((𝐷𝑖) ∈ ℝ ∧ (𝐶𝑖) ∈ ℝ) ∧ (((𝑌𝑖) + (𝐸 / (2 · (√‘(♯‘𝑋))))) ∈ ℝ ∧ ((𝑌𝑖) − (𝐸 / (2 · (√‘(♯‘𝑋))))) ∈ ℝ)))
140 iooltub 41793 . . . . . . . . . . . . . 14 (((𝑌𝑖) ∈ ℝ* ∧ ((𝑌𝑖) + (𝐸 / (2 · (√‘(♯‘𝑋))))) ∈ ℝ* ∧ (𝐷𝑖) ∈ ((𝑌𝑖)(,)((𝑌𝑖) + (𝐸 / (2 · (√‘(♯‘𝑋))))))) → (𝐷𝑖) < ((𝑌𝑖) + (𝐸 / (2 · (√‘(♯‘𝑋))))))
14187, 108, 109, 140syl3anc 1367 . . . . . . . . . . . . 13 ((𝜑𝑖𝑋) → (𝐷𝑖) < ((𝑌𝑖) + (𝐸 / (2 · (√‘(♯‘𝑋))))))
142 ioogtlb 41777 . . . . . . . . . . . . . 14 ((((𝑌𝑖) − (𝐸 / (2 · (√‘(♯‘𝑋))))) ∈ ℝ* ∧ (𝑌𝑖) ∈ ℝ* ∧ (𝐶𝑖) ∈ (((𝑌𝑖) − (𝐸 / (2 · (√‘(♯‘𝑋)))))(,)(𝑌𝑖))) → ((𝑌𝑖) − (𝐸 / (2 · (√‘(♯‘𝑋))))) < (𝐶𝑖))
143102, 87, 103, 142syl3anc 1367 . . . . . . . . . . . . 13 ((𝜑𝑖𝑋) → ((𝑌𝑖) − (𝐸 / (2 · (√‘(♯‘𝑋))))) < (𝐶𝑖))
144141, 143jca 514 . . . . . . . . . . . 12 ((𝜑𝑖𝑋) → ((𝐷𝑖) < ((𝑌𝑖) + (𝐸 / (2 · (√‘(♯‘𝑋))))) ∧ ((𝑌𝑖) − (𝐸 / (2 · (√‘(♯‘𝑋))))) < (𝐶𝑖)))
145 lt2sub 11140 . . . . . . . . . . . 12 ((((𝐷𝑖) ∈ ℝ ∧ (𝐶𝑖) ∈ ℝ) ∧ (((𝑌𝑖) + (𝐸 / (2 · (√‘(♯‘𝑋))))) ∈ ℝ ∧ ((𝑌𝑖) − (𝐸 / (2 · (√‘(♯‘𝑋))))) ∈ ℝ)) → (((𝐷𝑖) < ((𝑌𝑖) + (𝐸 / (2 · (√‘(♯‘𝑋))))) ∧ ((𝑌𝑖) − (𝐸 / (2 · (√‘(♯‘𝑋))))) < (𝐶𝑖)) → ((𝐷𝑖) − (𝐶𝑖)) < (((𝑌𝑖) + (𝐸 / (2 · (√‘(♯‘𝑋))))) − ((𝑌𝑖) − (𝐸 / (2 · (√‘(♯‘𝑋))))))))
146139, 144, 145sylc 65 . . . . . . . . . . 11 ((𝜑𝑖𝑋) → ((𝐷𝑖) − (𝐶𝑖)) < (((𝑌𝑖) + (𝐸 / (2 · (√‘(♯‘𝑋))))) − ((𝑌𝑖) − (𝐸 / (2 · (√‘(♯‘𝑋)))))))
14738recnd 10671 . . . . . . . . . . . . 13 ((𝜑𝑖𝑋) → (𝑌𝑖) ∈ ℂ)
148100recnd 10671 . . . . . . . . . . . . 13 ((𝜑𝑖𝑋) → (𝐸 / (2 · (√‘(♯‘𝑋)))) ∈ ℂ)
149147, 148, 148pnncand 11038 . . . . . . . . . . . 12 ((𝜑𝑖𝑋) → (((𝑌𝑖) + (𝐸 / (2 · (√‘(♯‘𝑋))))) − ((𝑌𝑖) − (𝐸 / (2 · (√‘(♯‘𝑋)))))) = ((𝐸 / (2 · (√‘(♯‘𝑋)))) + (𝐸 / (2 · (√‘(♯‘𝑋))))))
15078recnd 10671 . . . . . . . . . . . . . . . . 17 (𝜑𝐸 ∈ ℂ)
15196rpcnd 12436 . . . . . . . . . . . . . . . . 17 (𝜑 → (√‘(♯‘𝑋)) ∈ ℂ)
152 2cnd 11718 . . . . . . . . . . . . . . . . 17 (𝜑 → 2 ∈ ℂ)
15396rpne0d 12439 . . . . . . . . . . . . . . . . 17 (𝜑 → (√‘(♯‘𝑋)) ≠ 0)
15489rpne0d 12439 . . . . . . . . . . . . . . . . 17 (𝜑 → 2 ≠ 0)
155150, 151, 152, 153, 154divdiv3d 41634 . . . . . . . . . . . . . . . 16 (𝜑 → ((𝐸 / (√‘(♯‘𝑋))) / 2) = (𝐸 / (2 · (√‘(♯‘𝑋)))))
156155eqcomd 2829 . . . . . . . . . . . . . . 15 (𝜑 → (𝐸 / (2 · (√‘(♯‘𝑋)))) = ((𝐸 / (√‘(♯‘𝑋))) / 2))
157156, 156oveq12d 7176 . . . . . . . . . . . . . 14 (𝜑 → ((𝐸 / (2 · (√‘(♯‘𝑋)))) + (𝐸 / (2 · (√‘(♯‘𝑋))))) = (((𝐸 / (√‘(♯‘𝑋))) / 2) + ((𝐸 / (√‘(♯‘𝑋))) / 2)))
158150, 151, 153divcld 11418 . . . . . . . . . . . . . . 15 (𝜑 → (𝐸 / (√‘(♯‘𝑋))) ∈ ℂ)
1591582halvesd 11886 . . . . . . . . . . . . . 14 (𝜑 → (((𝐸 / (√‘(♯‘𝑋))) / 2) + ((𝐸 / (√‘(♯‘𝑋))) / 2)) = (𝐸 / (√‘(♯‘𝑋))))
160157, 159eqtrd 2858 . . . . . . . . . . . . 13 (𝜑 → ((𝐸 / (2 · (√‘(♯‘𝑋)))) + (𝐸 / (2 · (√‘(♯‘𝑋))))) = (𝐸 / (√‘(♯‘𝑋))))
161160adantr 483 . . . . . . . . . . . 12 ((𝜑𝑖𝑋) → ((𝐸 / (2 · (√‘(♯‘𝑋)))) + (𝐸 / (2 · (√‘(♯‘𝑋))))) = (𝐸 / (√‘(♯‘𝑋))))
162149, 161eqtrd 2858 . . . . . . . . . . 11 ((𝜑𝑖𝑋) → (((𝑌𝑖) + (𝐸 / (2 · (√‘(♯‘𝑋))))) − ((𝑌𝑖) − (𝐸 / (2 · (√‘(♯‘𝑋)))))) = (𝐸 / (√‘(♯‘𝑋))))
163146, 162breqtrd 5094 . . . . . . . . . 10 ((𝜑𝑖𝑋) → ((𝐷𝑖) − (𝐶𝑖)) < (𝐸 / (√‘(♯‘𝑋))))
164134adantr 483 . . . . . . . . . . 11 ((𝜑𝑖𝑋) → (𝐸 / (√‘(♯‘𝑋))) ∈ ℝ)
165 0red 10646 . . . . . . . . . . . . 13 (𝜑 → 0 ∈ ℝ)
16696rpred 12434 . . . . . . . . . . . . . 14 (𝜑 → (√‘(♯‘𝑋)) ∈ ℝ)
16777rpgt0d 12437 . . . . . . . . . . . . . 14 (𝜑 → 0 < 𝐸)
16896rpgt0d 12437 . . . . . . . . . . . . . 14 (𝜑 → 0 < (√‘(♯‘𝑋)))
16978, 166, 167, 168divgt0d 11577 . . . . . . . . . . . . 13 (𝜑 → 0 < (𝐸 / (√‘(♯‘𝑋))))
170165, 134, 169ltled 10790 . . . . . . . . . . . 12 (𝜑 → 0 ≤ (𝐸 / (√‘(♯‘𝑋))))
171170adantr 483 . . . . . . . . . . 11 ((𝜑𝑖𝑋) → 0 ≤ (𝐸 / (√‘(♯‘𝑋))))
172 lt2sq 13501 . . . . . . . . . . 11 (((((𝐷𝑖) − (𝐶𝑖)) ∈ ℝ ∧ 0 ≤ ((𝐷𝑖) − (𝐶𝑖))) ∧ ((𝐸 / (√‘(♯‘𝑋))) ∈ ℝ ∧ 0 ≤ (𝐸 / (√‘(♯‘𝑋))))) → (((𝐷𝑖) − (𝐶𝑖)) < (𝐸 / (√‘(♯‘𝑋))) ↔ (((𝐷𝑖) − (𝐶𝑖))↑2) < ((𝐸 / (√‘(♯‘𝑋)))↑2)))
17370, 120, 164, 171, 172syl22anc 836 . . . . . . . . . 10 ((𝜑𝑖𝑋) → (((𝐷𝑖) − (𝐶𝑖)) < (𝐸 / (√‘(♯‘𝑋))) ↔ (((𝐷𝑖) − (𝐶𝑖))↑2) < ((𝐸 / (√‘(♯‘𝑋)))↑2)))
174163, 173mpbid 234 . . . . . . . . 9 ((𝜑𝑖𝑋) → (((𝐷𝑖) − (𝐶𝑖))↑2) < ((𝐸 / (√‘(♯‘𝑋)))↑2))
1751, 80, 71, 136, 174fsumlt 15157 . . . . . . . 8 (𝜑 → Σ𝑖𝑋 (((𝐷𝑖) − (𝐶𝑖))↑2) < Σ𝑖𝑋 ((𝐸 / (√‘(♯‘𝑋)))↑2))
1761, 136fsumrecl 15093 . . . . . . . . 9 (𝜑 → Σ𝑖𝑋 ((𝐸 / (√‘(♯‘𝑋)))↑2) ∈ ℝ)
177164sqge0d 13615 . . . . . . . . . 10 ((𝜑𝑖𝑋) → 0 ≤ ((𝐸 / (√‘(♯‘𝑋)))↑2))
1781, 136, 177fsumge0 15152 . . . . . . . . 9 (𝜑 → 0 ≤ Σ𝑖𝑋 ((𝐸 / (√‘(♯‘𝑋)))↑2))
17972, 74, 176, 178sqrtltd 14789 . . . . . . . 8 (𝜑 → (Σ𝑖𝑋 (((𝐷𝑖) − (𝐶𝑖))↑2) < Σ𝑖𝑋 ((𝐸 / (√‘(♯‘𝑋)))↑2) ↔ (√‘Σ𝑖𝑋 (((𝐷𝑖) − (𝐶𝑖))↑2)) < (√‘Σ𝑖𝑋 ((𝐸 / (√‘(♯‘𝑋)))↑2))))
180175, 179mpbid 234 . . . . . . 7 (𝜑 → (√‘Σ𝑖𝑋 (((𝐷𝑖) − (𝐶𝑖))↑2)) < (√‘Σ𝑖𝑋 ((𝐸 / (√‘(♯‘𝑋)))↑2)))
181135recnd 10671 . . . . . . . . . . 11 (𝜑 → ((𝐸 / (√‘(♯‘𝑋)))↑2) ∈ ℂ)
182 fsumconst 15147 . . . . . . . . . . 11 ((𝑋 ∈ Fin ∧ ((𝐸 / (√‘(♯‘𝑋)))↑2) ∈ ℂ) → Σ𝑖𝑋 ((𝐸 / (√‘(♯‘𝑋)))↑2) = ((♯‘𝑋) · ((𝐸 / (√‘(♯‘𝑋)))↑2)))
1831, 181, 182syl2anc 586 . . . . . . . . . 10 (𝜑 → Σ𝑖𝑋 ((𝐸 / (√‘(♯‘𝑋)))↑2) = ((♯‘𝑋) · ((𝐸 / (√‘(♯‘𝑋)))↑2)))
184 sqdiv 13490 . . . . . . . . . . . . 13 ((𝐸 ∈ ℂ ∧ (√‘(♯‘𝑋)) ∈ ℂ ∧ (√‘(♯‘𝑋)) ≠ 0) → ((𝐸 / (√‘(♯‘𝑋)))↑2) = ((𝐸↑2) / ((√‘(♯‘𝑋))↑2)))
185150, 151, 153, 184syl3anc 1367 . . . . . . . . . . . 12 (𝜑 → ((𝐸 / (√‘(♯‘𝑋)))↑2) = ((𝐸↑2) / ((√‘(♯‘𝑋))↑2)))
18693recnd 10671 . . . . . . . . . . . . . 14 (𝜑 → (♯‘𝑋) ∈ ℂ)
187 sqrtth 14726 . . . . . . . . . . . . . 14 ((♯‘𝑋) ∈ ℂ → ((√‘(♯‘𝑋))↑2) = (♯‘𝑋))
188186, 187syl 17 . . . . . . . . . . . . 13 (𝜑 → ((√‘(♯‘𝑋))↑2) = (♯‘𝑋))
189188oveq2d 7174 . . . . . . . . . . . 12 (𝜑 → ((𝐸↑2) / ((√‘(♯‘𝑋))↑2)) = ((𝐸↑2) / (♯‘𝑋)))
190185, 189eqtrd 2858 . . . . . . . . . . 11 (𝜑 → ((𝐸 / (√‘(♯‘𝑋)))↑2) = ((𝐸↑2) / (♯‘𝑋)))
191190oveq2d 7174 . . . . . . . . . 10 (𝜑 → ((♯‘𝑋) · ((𝐸 / (√‘(♯‘𝑋)))↑2)) = ((♯‘𝑋) · ((𝐸↑2) / (♯‘𝑋))))
192150sqcld 13511 . . . . . . . . . . 11 (𝜑 → (𝐸↑2) ∈ ℂ)
193165, 94gtned 10777 . . . . . . . . . . 11 (𝜑 → (♯‘𝑋) ≠ 0)
194192, 186, 193divcan2d 11420 . . . . . . . . . 10 (𝜑 → ((♯‘𝑋) · ((𝐸↑2) / (♯‘𝑋))) = (𝐸↑2))
195183, 191, 1943eqtrd 2862 . . . . . . . . 9 (𝜑 → Σ𝑖𝑋 ((𝐸 / (√‘(♯‘𝑋)))↑2) = (𝐸↑2))
196195fveq2d 6676 . . . . . . . 8 (𝜑 → (√‘Σ𝑖𝑋 ((𝐸 / (√‘(♯‘𝑋)))↑2)) = (√‘(𝐸↑2)))
197165, 78, 167ltled 10790 . . . . . . . . 9 (𝜑 → 0 ≤ 𝐸)
198 sqrtsq 14631 . . . . . . . . 9 ((𝐸 ∈ ℝ ∧ 0 ≤ 𝐸) → (√‘(𝐸↑2)) = 𝐸)
19978, 197, 198syl2anc 586 . . . . . . . 8 (𝜑 → (√‘(𝐸↑2)) = 𝐸)
200 eqidd 2824 . . . . . . . 8 (𝜑𝐸 = 𝐸)
201196, 199, 2003eqtrd 2862 . . . . . . 7 (𝜑 → (√‘Σ𝑖𝑋 ((𝐸 / (√‘(♯‘𝑋)))↑2)) = 𝐸)
202180, 201breqtrd 5094 . . . . . 6 (𝜑 → (√‘Σ𝑖𝑋 (((𝐷𝑖) − (𝐶𝑖))↑2)) < 𝐸)
203202adantr 483 . . . . 5 ((𝜑𝑓X𝑖𝑋 ((𝐶𝑖)[,)(𝐷𝑖))) → (√‘Σ𝑖𝑋 (((𝐷𝑖) − (𝐶𝑖))↑2)) < 𝐸)
20469, 76, 79, 133, 203lttrd 10803 . . . 4 ((𝜑𝑓X𝑖𝑋 ((𝐶𝑖)[,)(𝐷𝑖))) → (𝑌(dist‘(ℝ^‘𝑋))𝑓) < 𝐸)
205 eqid 2823 . . . . . . . 8 (dist‘(ℝ^‘𝑋)) = (dist‘(ℝ^‘𝑋))
206205rrxmetfi 24017 . . . . . . 7 (𝑋 ∈ Fin → (dist‘(ℝ^‘𝑋)) ∈ (Met‘(ℝ ↑m 𝑋)))
207 metxmet 22946 . . . . . . 7 ((dist‘(ℝ^‘𝑋)) ∈ (Met‘(ℝ ↑m 𝑋)) → (dist‘(ℝ^‘𝑋)) ∈ (∞Met‘(ℝ ↑m 𝑋)))
2081, 206, 2073syl 18 . . . . . 6 (𝜑 → (dist‘(ℝ^‘𝑋)) ∈ (∞Met‘(ℝ ↑m 𝑋)))
209208adantr 483 . . . . 5 ((𝜑𝑓X𝑖𝑋 ((𝐶𝑖)[,)(𝐷𝑖))) → (dist‘(ℝ^‘𝑋)) ∈ (∞Met‘(ℝ ↑m 𝑋)))
21079rexrd 10693 . . . . 5 ((𝜑𝑓X𝑖𝑋 ((𝐶𝑖)[,)(𝐷𝑖))) → 𝐸 ∈ ℝ*)
21127, 3eleqtrdi 2925 . . . . 5 ((𝜑𝑓X𝑖𝑋 ((𝐶𝑖)[,)(𝐷𝑖))) → 𝑓 ∈ (ℝ ↑m 𝑋))
212 elbl2 23002 . . . . 5 ((((dist‘(ℝ^‘𝑋)) ∈ (∞Met‘(ℝ ↑m 𝑋)) ∧ 𝐸 ∈ ℝ*) ∧ (𝑌 ∈ (ℝ ↑m 𝑋) ∧ 𝑓 ∈ (ℝ ↑m 𝑋))) → (𝑓 ∈ (𝑌(ball‘(dist‘(ℝ^‘𝑋)))𝐸) ↔ (𝑌(dist‘(ℝ^‘𝑋))𝑓) < 𝐸))
213209, 210, 17, 211, 212syl22anc 836 . . . 4 ((𝜑𝑓X𝑖𝑋 ((𝐶𝑖)[,)(𝐷𝑖))) → (𝑓 ∈ (𝑌(ball‘(dist‘(ℝ^‘𝑋)))𝐸) ↔ (𝑌(dist‘(ℝ^‘𝑋))𝑓) < 𝐸))
214204, 213mpbird 259 . . 3 ((𝜑𝑓X𝑖𝑋 ((𝐶𝑖)[,)(𝐷𝑖))) → 𝑓 ∈ (𝑌(ball‘(dist‘(ℝ^‘𝑋)))𝐸))
215214ralrimiva 3184 . 2 (𝜑 → ∀𝑓X 𝑖𝑋 ((𝐶𝑖)[,)(𝐷𝑖))𝑓 ∈ (𝑌(ball‘(dist‘(ℝ^‘𝑋)))𝐸))
216 dfss3 3958 . 2 (X𝑖𝑋 ((𝐶𝑖)[,)(𝐷𝑖)) ⊆ (𝑌(ball‘(dist‘(ℝ^‘𝑋)))𝐸) ↔ ∀𝑓X 𝑖𝑋 ((𝐶𝑖)[,)(𝐷𝑖))𝑓 ∈ (𝑌(ball‘(dist‘(ℝ^‘𝑋)))𝐸))
217215, 216sylibr 236 1 (𝜑X𝑖𝑋 ((𝐶𝑖)[,)(𝐷𝑖)) ⊆ (𝑌(ball‘(dist‘(ℝ^‘𝑋)))𝐸))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wa 398   = wceq 1537  wnf 1784  wcel 2114  wne 3018  wral 3140  Vcvv 3496  wss 3938  c0 4293   class class class wbr 5068  wf 6353  cfv 6357  (class class class)co 7158  cmpo 7160  m cmap 8408  Xcixp 8463  Fincfn 8511  cc 10537  cr 10538  0cc0 10539   + caddc 10542   · cmul 10544  *cxr 10676   < clt 10677  cle 10678  cmin 10872   / cdiv 11299  cn 11640  2c2 11695  0cn0 11900  +crp 12392  (,)cioo 12741  [,)cico 12743  cexp 13432  chash 13693  csqrt 14594  abscabs 14595  Σcsu 15044  distcds 16576  ∞Metcxmet 20532  Metcmet 20533  ballcbl 20534  ℝ^crrx 23988
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2795  ax-rep 5192  ax-sep 5205  ax-nul 5212  ax-pow 5268  ax-pr 5332  ax-un 7463  ax-inf2 9106  ax-cnex 10595  ax-resscn 10596  ax-1cn 10597  ax-icn 10598  ax-addcl 10599  ax-addrcl 10600  ax-mulcl 10601  ax-mulrcl 10602  ax-mulcom 10603  ax-addass 10604  ax-mulass 10605  ax-distr 10606  ax-i2m1 10607  ax-1ne0 10608  ax-1rid 10609  ax-rnegex 10610  ax-rrecex 10611  ax-cnre 10612  ax-pre-lttri 10613  ax-pre-lttrn 10614  ax-pre-ltadd 10615  ax-pre-mulgt0 10616  ax-pre-sup 10617  ax-addf 10618  ax-mulf 10619
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-fal 1550  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2802  df-cleq 2816  df-clel 2895  df-nfc 2965  df-ne 3019  df-nel 3126  df-ral 3145  df-rex 3146  df-reu 3147  df-rmo 3148  df-rab 3149  df-v 3498  df-sbc 3775  df-csb 3886  df-dif 3941  df-un 3943  df-in 3945  df-ss 3954  df-pss 3956  df-nul 4294  df-if 4470  df-pw 4543  df-sn 4570  df-pr 4572  df-tp 4574  df-op 4576  df-uni 4841  df-int 4879  df-iun 4923  df-br 5069  df-opab 5131  df-mpt 5149  df-tr 5175  df-id 5462  df-eprel 5467  df-po 5476  df-so 5477  df-fr 5516  df-se 5517  df-we 5518  df-xp 5563  df-rel 5564  df-cnv 5565  df-co 5566  df-dm 5567  df-rn 5568  df-res 5569  df-ima 5570  df-pred 6150  df-ord 6196  df-on 6197  df-lim 6198  df-suc 6199  df-iota 6316  df-fun 6359  df-fn 6360  df-f 6361  df-f1 6362  df-fo 6363  df-f1o 6364  df-fv 6365  df-isom 6366  df-riota 7116  df-ov 7161  df-oprab 7162  df-mpo 7163  df-of 7411  df-om 7583  df-1st 7691  df-2nd 7692  df-supp 7833  df-tpos 7894  df-wrecs 7949  df-recs 8010  df-rdg 8048  df-1o 8104  df-oadd 8108  df-er 8291  df-map 8410  df-ixp 8464  df-en 8512  df-dom 8513  df-sdom 8514  df-fin 8515  df-fsupp 8836  df-sup 8908  df-oi 8976  df-card 9370  df-pnf 10679  df-mnf 10680  df-xr 10681  df-ltxr 10682  df-le 10683  df-sub 10874  df-neg 10875  df-div 11300  df-nn 11641  df-2 11703  df-3 11704  df-4 11705  df-5 11706  df-6 11707  df-7 11708  df-8 11709  df-9 11710  df-n0 11901  df-z 11985  df-dec 12102  df-uz 12247  df-rp 12393  df-xadd 12511  df-ioo 12745  df-ico 12747  df-fz 12896  df-fzo 13037  df-seq 13373  df-exp 13433  df-hash 13694  df-cj 14460  df-re 14461  df-im 14462  df-sqrt 14596  df-abs 14597  df-clim 14847  df-sum 15045  df-struct 16487  df-ndx 16488  df-slot 16489  df-base 16491  df-sets 16492  df-ress 16493  df-plusg 16580  df-mulr 16581  df-starv 16582  df-sca 16583  df-vsca 16584  df-ip 16585  df-tset 16586  df-ple 16587  df-ds 16589  df-unif 16590  df-hom 16591  df-cco 16592  df-0g 16717  df-gsum 16718  df-prds 16723  df-pws 16725  df-mgm 17854  df-sgrp 17903  df-mnd 17914  df-mhm 17958  df-grp 18108  df-minusg 18109  df-sbg 18110  df-subg 18278  df-ghm 18358  df-cntz 18449  df-cmn 18910  df-abl 18911  df-mgp 19242  df-ur 19254  df-ring 19301  df-cring 19302  df-oppr 19375  df-dvdsr 19393  df-unit 19394  df-invr 19424  df-dvr 19435  df-rnghom 19469  df-drng 19506  df-field 19507  df-subrg 19535  df-staf 19618  df-srng 19619  df-lmod 19638  df-lss 19706  df-sra 19946  df-rgmod 19947  df-psmet 20539  df-xmet 20540  df-met 20541  df-bl 20542  df-cnfld 20548  df-refld 20751  df-dsmm 20878  df-frlm 20893  df-nm 23194  df-tng 23196  df-tcph 23775  df-rrx 23990
This theorem is referenced by:  hoiqssbllem3  42913
  Copyright terms: Public domain W3C validator