![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > homa1 | Structured version Visualization version GIF version |
Description: The first component of an arrow is the ordered pair of domain and codomain. (Contributed by Mario Carneiro, 11-Jan-2017.) |
Ref | Expression |
---|---|
homahom.h | ⊢ 𝐻 = (Homa‘𝐶) |
Ref | Expression |
---|---|
homa1 | ⊢ (𝑍(𝑋𝐻𝑌)𝐹 → 𝑍 = 〈𝑋, 𝑌〉) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-br 4686 | . . . 4 ⊢ (𝑍(𝑋𝐻𝑌)𝐹 ↔ 〈𝑍, 𝐹〉 ∈ (𝑋𝐻𝑌)) | |
2 | homahom.h | . . . . 5 ⊢ 𝐻 = (Homa‘𝐶) | |
3 | eqid 2651 | . . . . 5 ⊢ (Base‘𝐶) = (Base‘𝐶) | |
4 | 2 | homarcl 16725 | . . . . 5 ⊢ (〈𝑍, 𝐹〉 ∈ (𝑋𝐻𝑌) → 𝐶 ∈ Cat) |
5 | eqid 2651 | . . . . 5 ⊢ (Hom ‘𝐶) = (Hom ‘𝐶) | |
6 | 2, 3 | homarcl2 16732 | . . . . . 6 ⊢ (〈𝑍, 𝐹〉 ∈ (𝑋𝐻𝑌) → (𝑋 ∈ (Base‘𝐶) ∧ 𝑌 ∈ (Base‘𝐶))) |
7 | 6 | simpld 474 | . . . . 5 ⊢ (〈𝑍, 𝐹〉 ∈ (𝑋𝐻𝑌) → 𝑋 ∈ (Base‘𝐶)) |
8 | 6 | simprd 478 | . . . . 5 ⊢ (〈𝑍, 𝐹〉 ∈ (𝑋𝐻𝑌) → 𝑌 ∈ (Base‘𝐶)) |
9 | 2, 3, 4, 5, 7, 8 | elhoma 16729 | . . . 4 ⊢ (〈𝑍, 𝐹〉 ∈ (𝑋𝐻𝑌) → (𝑍(𝑋𝐻𝑌)𝐹 ↔ (𝑍 = 〈𝑋, 𝑌〉 ∧ 𝐹 ∈ (𝑋(Hom ‘𝐶)𝑌)))) |
10 | 1, 9 | sylbi 207 | . . 3 ⊢ (𝑍(𝑋𝐻𝑌)𝐹 → (𝑍(𝑋𝐻𝑌)𝐹 ↔ (𝑍 = 〈𝑋, 𝑌〉 ∧ 𝐹 ∈ (𝑋(Hom ‘𝐶)𝑌)))) |
11 | 10 | ibi 256 | . 2 ⊢ (𝑍(𝑋𝐻𝑌)𝐹 → (𝑍 = 〈𝑋, 𝑌〉 ∧ 𝐹 ∈ (𝑋(Hom ‘𝐶)𝑌))) |
12 | 11 | simpld 474 | 1 ⊢ (𝑍(𝑋𝐻𝑌)𝐹 → 𝑍 = 〈𝑋, 𝑌〉) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 196 ∧ wa 383 = wceq 1523 ∈ wcel 2030 〈cop 4216 class class class wbr 4685 ‘cfv 5926 (class class class)co 6690 Basecbs 15904 Hom chom 15999 Homachoma 16720 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1762 ax-4 1777 ax-5 1879 ax-6 1945 ax-7 1981 ax-8 2032 ax-9 2039 ax-10 2059 ax-11 2074 ax-12 2087 ax-13 2282 ax-ext 2631 ax-rep 4804 ax-sep 4814 ax-nul 4822 ax-pow 4873 ax-pr 4936 ax-un 6991 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3an 1056 df-tru 1526 df-ex 1745 df-nf 1750 df-sb 1938 df-eu 2502 df-mo 2503 df-clab 2638 df-cleq 2644 df-clel 2647 df-nfc 2782 df-ne 2824 df-ral 2946 df-rex 2947 df-reu 2948 df-rab 2950 df-v 3233 df-sbc 3469 df-csb 3567 df-dif 3610 df-un 3612 df-in 3614 df-ss 3621 df-nul 3949 df-if 4120 df-pw 4193 df-sn 4211 df-pr 4213 df-op 4217 df-uni 4469 df-iun 4554 df-br 4686 df-opab 4746 df-mpt 4763 df-id 5053 df-xp 5149 df-rel 5150 df-cnv 5151 df-co 5152 df-dm 5153 df-rn 5154 df-res 5155 df-ima 5156 df-iota 5889 df-fun 5928 df-fn 5929 df-f 5930 df-f1 5931 df-fo 5932 df-f1o 5933 df-fv 5934 df-ov 6693 df-homa 16723 |
This theorem is referenced by: homadm 16737 homacd 16738 homadmcd 16739 |
Copyright terms: Public domain | W3C validator |