MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  homarel Structured version   Visualization version   GIF version

Theorem homarel 16451
Description: An arrow is an ordered pair. (Contributed by Mario Carneiro, 11-Jan-2017.)
Hypothesis
Ref Expression
homahom.h 𝐻 = (Homa𝐶)
Assertion
Ref Expression
homarel Rel (𝑋𝐻𝑌)

Proof of Theorem homarel
Dummy variable 𝑓 is distinct from all other variables.
StepHypRef Expression
1 xpss 5134 . . . 4 (((Base‘𝐶) × (Base‘𝐶)) × V) ⊆ (V × V)
2 homahom.h . . . . . . 7 𝐻 = (Homa𝐶)
3 eqid 2605 . . . . . . 7 (Base‘𝐶) = (Base‘𝐶)
42homarcl 16443 . . . . . . 7 (𝑓 ∈ (𝑋𝐻𝑌) → 𝐶 ∈ Cat)
52, 3, 4homaf 16445 . . . . . 6 (𝑓 ∈ (𝑋𝐻𝑌) → 𝐻:((Base‘𝐶) × (Base‘𝐶))⟶𝒫 (((Base‘𝐶) × (Base‘𝐶)) × V))
62, 3homarcl2 16450 . . . . . . 7 (𝑓 ∈ (𝑋𝐻𝑌) → (𝑋 ∈ (Base‘𝐶) ∧ 𝑌 ∈ (Base‘𝐶)))
76simpld 473 . . . . . 6 (𝑓 ∈ (𝑋𝐻𝑌) → 𝑋 ∈ (Base‘𝐶))
86simprd 477 . . . . . 6 (𝑓 ∈ (𝑋𝐻𝑌) → 𝑌 ∈ (Base‘𝐶))
95, 7, 8fovrnd 6677 . . . . 5 (𝑓 ∈ (𝑋𝐻𝑌) → (𝑋𝐻𝑌) ∈ 𝒫 (((Base‘𝐶) × (Base‘𝐶)) × V))
10 elelpwi 4114 . . . . 5 ((𝑓 ∈ (𝑋𝐻𝑌) ∧ (𝑋𝐻𝑌) ∈ 𝒫 (((Base‘𝐶) × (Base‘𝐶)) × V)) → 𝑓 ∈ (((Base‘𝐶) × (Base‘𝐶)) × V))
119, 10mpdan 698 . . . 4 (𝑓 ∈ (𝑋𝐻𝑌) → 𝑓 ∈ (((Base‘𝐶) × (Base‘𝐶)) × V))
121, 11sseldi 3561 . . 3 (𝑓 ∈ (𝑋𝐻𝑌) → 𝑓 ∈ (V × V))
1312ssriv 3567 . 2 (𝑋𝐻𝑌) ⊆ (V × V)
14 df-rel 5031 . 2 (Rel (𝑋𝐻𝑌) ↔ (𝑋𝐻𝑌) ⊆ (V × V))
1513, 14mpbir 219 1 Rel (𝑋𝐻𝑌)
Colors of variables: wff setvar class
Syntax hints:   = wceq 1474  wcel 1975  Vcvv 3168  wss 3535  𝒫 cpw 4103   × cxp 5022  Rel wrel 5029  cfv 5786  (class class class)co 6523  Basecbs 15637  Homachoma 16438
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1711  ax-4 1726  ax-5 1825  ax-6 1873  ax-7 1920  ax-8 1977  ax-9 1984  ax-10 2004  ax-11 2019  ax-12 2031  ax-13 2228  ax-ext 2585  ax-rep 4689  ax-sep 4699  ax-nul 4708  ax-pow 4760  ax-pr 4824  ax-un 6820
This theorem depends on definitions:  df-bi 195  df-or 383  df-an 384  df-3an 1032  df-tru 1477  df-ex 1695  df-nf 1700  df-sb 1866  df-eu 2457  df-mo 2458  df-clab 2592  df-cleq 2598  df-clel 2601  df-nfc 2735  df-ne 2777  df-ral 2896  df-rex 2897  df-reu 2898  df-rab 2900  df-v 3170  df-sbc 3398  df-csb 3495  df-dif 3538  df-un 3540  df-in 3542  df-ss 3549  df-nul 3870  df-if 4032  df-pw 4105  df-sn 4121  df-pr 4123  df-op 4127  df-uni 4363  df-iun 4447  df-br 4574  df-opab 4634  df-mpt 4635  df-id 4939  df-xp 5030  df-rel 5031  df-cnv 5032  df-co 5033  df-dm 5034  df-rn 5035  df-res 5036  df-ima 5037  df-iota 5750  df-fun 5788  df-fn 5789  df-f 5790  df-f1 5791  df-fo 5792  df-f1o 5793  df-fv 5794  df-ov 6526  df-homa 16441
This theorem is referenced by:  homahom  16454  homadm  16455  homacd  16456  homadmcd  16457
  Copyright terms: Public domain W3C validator