HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  homcl Structured version   Visualization version   GIF version

Theorem homcl 28454
Description: Closure of the scalar product of a Hilbert space operator. (Contributed by NM, 20-Feb-2006.) (New usage is discouraged.)
Assertion
Ref Expression
homcl ((𝐴 ∈ ℂ ∧ 𝑇: ℋ⟶ ℋ ∧ 𝐵 ∈ ℋ) → ((𝐴 ·op 𝑇)‘𝐵) ∈ ℋ)

Proof of Theorem homcl
StepHypRef Expression
1 homval 28449 . 2 ((𝐴 ∈ ℂ ∧ 𝑇: ℋ⟶ ℋ ∧ 𝐵 ∈ ℋ) → ((𝐴 ·op 𝑇)‘𝐵) = (𝐴 · (𝑇𝐵)))
2 ffvelrn 6313 . . . . 5 ((𝑇: ℋ⟶ ℋ ∧ 𝐵 ∈ ℋ) → (𝑇𝐵) ∈ ℋ)
32anim2i 592 . . . 4 ((𝐴 ∈ ℂ ∧ (𝑇: ℋ⟶ ℋ ∧ 𝐵 ∈ ℋ)) → (𝐴 ∈ ℂ ∧ (𝑇𝐵) ∈ ℋ))
433impb 1257 . . 3 ((𝐴 ∈ ℂ ∧ 𝑇: ℋ⟶ ℋ ∧ 𝐵 ∈ ℋ) → (𝐴 ∈ ℂ ∧ (𝑇𝐵) ∈ ℋ))
5 hvmulcl 27719 . . 3 ((𝐴 ∈ ℂ ∧ (𝑇𝐵) ∈ ℋ) → (𝐴 · (𝑇𝐵)) ∈ ℋ)
64, 5syl 17 . 2 ((𝐴 ∈ ℂ ∧ 𝑇: ℋ⟶ ℋ ∧ 𝐵 ∈ ℋ) → (𝐴 · (𝑇𝐵)) ∈ ℋ)
71, 6eqeltrd 2698 1 ((𝐴 ∈ ℂ ∧ 𝑇: ℋ⟶ ℋ ∧ 𝐵 ∈ ℋ) → ((𝐴 ·op 𝑇)‘𝐵) ∈ ℋ)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 384  w3a 1036  wcel 1987  wf 5843  cfv 5847  (class class class)co 6604  cc 9878  chil 27625   · csm 27627   ·op chot 27645
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-8 1989  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601  ax-rep 4731  ax-sep 4741  ax-nul 4749  ax-pow 4803  ax-pr 4867  ax-un 6902  ax-hilex 27705  ax-hfvmul 27711
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1038  df-tru 1483  df-ex 1702  df-nf 1707  df-sb 1878  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-ne 2791  df-ral 2912  df-rex 2913  df-reu 2914  df-rab 2916  df-v 3188  df-sbc 3418  df-csb 3515  df-dif 3558  df-un 3560  df-in 3562  df-ss 3569  df-nul 3892  df-if 4059  df-pw 4132  df-sn 4149  df-pr 4151  df-op 4155  df-uni 4403  df-iun 4487  df-br 4614  df-opab 4674  df-mpt 4675  df-id 4989  df-xp 5080  df-rel 5081  df-cnv 5082  df-co 5083  df-dm 5084  df-rn 5085  df-res 5086  df-ima 5087  df-iota 5810  df-fun 5849  df-fn 5850  df-f 5851  df-f1 5852  df-fo 5853  df-f1o 5854  df-fv 5855  df-ov 6607  df-oprab 6608  df-mpt2 6609  df-map 7804  df-homul 28439
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator