HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  homco1 Structured version   Visualization version   GIF version

Theorem homco1 28630
Description: Associative law for scalar product and composition of operators. (Contributed by NM, 13-Aug-2006.) (New usage is discouraged.)
Assertion
Ref Expression
homco1 ((𝐴 ∈ ℂ ∧ 𝑇: ℋ⟶ ℋ ∧ 𝑈: ℋ⟶ ℋ) → ((𝐴 ·op 𝑇) ∘ 𝑈) = (𝐴 ·op (𝑇𝑈)))

Proof of Theorem homco1
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 fvco3 6262 . . . . . 6 ((𝑈: ℋ⟶ ℋ ∧ 𝑥 ∈ ℋ) → (((𝐴 ·op 𝑇) ∘ 𝑈)‘𝑥) = ((𝐴 ·op 𝑇)‘(𝑈𝑥)))
213ad2antl3 1223 . . . . 5 (((𝐴 ∈ ℂ ∧ 𝑇: ℋ⟶ ℋ ∧ 𝑈: ℋ⟶ ℋ) ∧ 𝑥 ∈ ℋ) → (((𝐴 ·op 𝑇) ∘ 𝑈)‘𝑥) = ((𝐴 ·op 𝑇)‘(𝑈𝑥)))
3 fvco3 6262 . . . . . . . 8 ((𝑈: ℋ⟶ ℋ ∧ 𝑥 ∈ ℋ) → ((𝑇𝑈)‘𝑥) = (𝑇‘(𝑈𝑥)))
433ad2antl3 1223 . . . . . . 7 (((𝐴 ∈ ℂ ∧ 𝑇: ℋ⟶ ℋ ∧ 𝑈: ℋ⟶ ℋ) ∧ 𝑥 ∈ ℋ) → ((𝑇𝑈)‘𝑥) = (𝑇‘(𝑈𝑥)))
54oveq2d 6651 . . . . . 6 (((𝐴 ∈ ℂ ∧ 𝑇: ℋ⟶ ℋ ∧ 𝑈: ℋ⟶ ℋ) ∧ 𝑥 ∈ ℋ) → (𝐴 · ((𝑇𝑈)‘𝑥)) = (𝐴 · (𝑇‘(𝑈𝑥))))
6 ffvelrn 6343 . . . . . . . . . 10 ((𝑈: ℋ⟶ ℋ ∧ 𝑥 ∈ ℋ) → (𝑈𝑥) ∈ ℋ)
7 homval 28570 . . . . . . . . . 10 ((𝐴 ∈ ℂ ∧ 𝑇: ℋ⟶ ℋ ∧ (𝑈𝑥) ∈ ℋ) → ((𝐴 ·op 𝑇)‘(𝑈𝑥)) = (𝐴 · (𝑇‘(𝑈𝑥))))
86, 7syl3an3 1359 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ 𝑇: ℋ⟶ ℋ ∧ (𝑈: ℋ⟶ ℋ ∧ 𝑥 ∈ ℋ)) → ((𝐴 ·op 𝑇)‘(𝑈𝑥)) = (𝐴 · (𝑇‘(𝑈𝑥))))
983expa 1263 . . . . . . . 8 (((𝐴 ∈ ℂ ∧ 𝑇: ℋ⟶ ℋ) ∧ (𝑈: ℋ⟶ ℋ ∧ 𝑥 ∈ ℋ)) → ((𝐴 ·op 𝑇)‘(𝑈𝑥)) = (𝐴 · (𝑇‘(𝑈𝑥))))
109exp43 639 . . . . . . 7 (𝐴 ∈ ℂ → (𝑇: ℋ⟶ ℋ → (𝑈: ℋ⟶ ℋ → (𝑥 ∈ ℋ → ((𝐴 ·op 𝑇)‘(𝑈𝑥)) = (𝐴 · (𝑇‘(𝑈𝑥)))))))
11103imp1 1278 . . . . . 6 (((𝐴 ∈ ℂ ∧ 𝑇: ℋ⟶ ℋ ∧ 𝑈: ℋ⟶ ℋ) ∧ 𝑥 ∈ ℋ) → ((𝐴 ·op 𝑇)‘(𝑈𝑥)) = (𝐴 · (𝑇‘(𝑈𝑥))))
125, 11eqtr4d 2657 . . . . 5 (((𝐴 ∈ ℂ ∧ 𝑇: ℋ⟶ ℋ ∧ 𝑈: ℋ⟶ ℋ) ∧ 𝑥 ∈ ℋ) → (𝐴 · ((𝑇𝑈)‘𝑥)) = ((𝐴 ·op 𝑇)‘(𝑈𝑥)))
132, 12eqtr4d 2657 . . . 4 (((𝐴 ∈ ℂ ∧ 𝑇: ℋ⟶ ℋ ∧ 𝑈: ℋ⟶ ℋ) ∧ 𝑥 ∈ ℋ) → (((𝐴 ·op 𝑇) ∘ 𝑈)‘𝑥) = (𝐴 · ((𝑇𝑈)‘𝑥)))
14 fco 6045 . . . . . . . 8 ((𝑇: ℋ⟶ ℋ ∧ 𝑈: ℋ⟶ ℋ) → (𝑇𝑈): ℋ⟶ ℋ)
15 homval 28570 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ (𝑇𝑈): ℋ⟶ ℋ ∧ 𝑥 ∈ ℋ) → ((𝐴 ·op (𝑇𝑈))‘𝑥) = (𝐴 · ((𝑇𝑈)‘𝑥)))
1614, 15syl3an2 1358 . . . . . . 7 ((𝐴 ∈ ℂ ∧ (𝑇: ℋ⟶ ℋ ∧ 𝑈: ℋ⟶ ℋ) ∧ 𝑥 ∈ ℋ) → ((𝐴 ·op (𝑇𝑈))‘𝑥) = (𝐴 · ((𝑇𝑈)‘𝑥)))
17163expia 1265 . . . . . 6 ((𝐴 ∈ ℂ ∧ (𝑇: ℋ⟶ ℋ ∧ 𝑈: ℋ⟶ ℋ)) → (𝑥 ∈ ℋ → ((𝐴 ·op (𝑇𝑈))‘𝑥) = (𝐴 · ((𝑇𝑈)‘𝑥))))
18173impb 1258 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝑇: ℋ⟶ ℋ ∧ 𝑈: ℋ⟶ ℋ) → (𝑥 ∈ ℋ → ((𝐴 ·op (𝑇𝑈))‘𝑥) = (𝐴 · ((𝑇𝑈)‘𝑥))))
1918imp 445 . . . 4 (((𝐴 ∈ ℂ ∧ 𝑇: ℋ⟶ ℋ ∧ 𝑈: ℋ⟶ ℋ) ∧ 𝑥 ∈ ℋ) → ((𝐴 ·op (𝑇𝑈))‘𝑥) = (𝐴 · ((𝑇𝑈)‘𝑥)))
2013, 19eqtr4d 2657 . . 3 (((𝐴 ∈ ℂ ∧ 𝑇: ℋ⟶ ℋ ∧ 𝑈: ℋ⟶ ℋ) ∧ 𝑥 ∈ ℋ) → (((𝐴 ·op 𝑇) ∘ 𝑈)‘𝑥) = ((𝐴 ·op (𝑇𝑈))‘𝑥))
2120ralrimiva 2963 . 2 ((𝐴 ∈ ℂ ∧ 𝑇: ℋ⟶ ℋ ∧ 𝑈: ℋ⟶ ℋ) → ∀𝑥 ∈ ℋ (((𝐴 ·op 𝑇) ∘ 𝑈)‘𝑥) = ((𝐴 ·op (𝑇𝑈))‘𝑥))
22 homulcl 28588 . . . 4 ((𝐴 ∈ ℂ ∧ 𝑇: ℋ⟶ ℋ) → (𝐴 ·op 𝑇): ℋ⟶ ℋ)
23 fco 6045 . . . 4 (((𝐴 ·op 𝑇): ℋ⟶ ℋ ∧ 𝑈: ℋ⟶ ℋ) → ((𝐴 ·op 𝑇) ∘ 𝑈): ℋ⟶ ℋ)
2422, 23stoic3 1699 . . 3 ((𝐴 ∈ ℂ ∧ 𝑇: ℋ⟶ ℋ ∧ 𝑈: ℋ⟶ ℋ) → ((𝐴 ·op 𝑇) ∘ 𝑈): ℋ⟶ ℋ)
25 homulcl 28588 . . . . 5 ((𝐴 ∈ ℂ ∧ (𝑇𝑈): ℋ⟶ ℋ) → (𝐴 ·op (𝑇𝑈)): ℋ⟶ ℋ)
2614, 25sylan2 491 . . . 4 ((𝐴 ∈ ℂ ∧ (𝑇: ℋ⟶ ℋ ∧ 𝑈: ℋ⟶ ℋ)) → (𝐴 ·op (𝑇𝑈)): ℋ⟶ ℋ)
27263impb 1258 . . 3 ((𝐴 ∈ ℂ ∧ 𝑇: ℋ⟶ ℋ ∧ 𝑈: ℋ⟶ ℋ) → (𝐴 ·op (𝑇𝑈)): ℋ⟶ ℋ)
28 hoeq 28589 . . 3 ((((𝐴 ·op 𝑇) ∘ 𝑈): ℋ⟶ ℋ ∧ (𝐴 ·op (𝑇𝑈)): ℋ⟶ ℋ) → (∀𝑥 ∈ ℋ (((𝐴 ·op 𝑇) ∘ 𝑈)‘𝑥) = ((𝐴 ·op (𝑇𝑈))‘𝑥) ↔ ((𝐴 ·op 𝑇) ∘ 𝑈) = (𝐴 ·op (𝑇𝑈))))
2924, 27, 28syl2anc 692 . 2 ((𝐴 ∈ ℂ ∧ 𝑇: ℋ⟶ ℋ ∧ 𝑈: ℋ⟶ ℋ) → (∀𝑥 ∈ ℋ (((𝐴 ·op 𝑇) ∘ 𝑈)‘𝑥) = ((𝐴 ·op (𝑇𝑈))‘𝑥) ↔ ((𝐴 ·op 𝑇) ∘ 𝑈) = (𝐴 ·op (𝑇𝑈))))
3021, 29mpbid 222 1 ((𝐴 ∈ ℂ ∧ 𝑇: ℋ⟶ ℋ ∧ 𝑈: ℋ⟶ ℋ) → ((𝐴 ·op 𝑇) ∘ 𝑈) = (𝐴 ·op (𝑇𝑈)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 384  w3a 1036   = wceq 1481  wcel 1988  wral 2909  ccom 5108  wf 5872  cfv 5876  (class class class)co 6635  cc 9919  chil 27746   · csm 27748   ·op chot 27766
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1720  ax-4 1735  ax-5 1837  ax-6 1886  ax-7 1933  ax-8 1990  ax-9 1997  ax-10 2017  ax-11 2032  ax-12 2045  ax-13 2244  ax-ext 2600  ax-rep 4762  ax-sep 4772  ax-nul 4780  ax-pow 4834  ax-pr 4897  ax-un 6934  ax-hilex 27826  ax-hfvmul 27832
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1038  df-tru 1484  df-ex 1703  df-nf 1708  df-sb 1879  df-eu 2472  df-mo 2473  df-clab 2607  df-cleq 2613  df-clel 2616  df-nfc 2751  df-ne 2792  df-ral 2914  df-rex 2915  df-reu 2916  df-rab 2918  df-v 3197  df-sbc 3430  df-csb 3527  df-dif 3570  df-un 3572  df-in 3574  df-ss 3581  df-nul 3908  df-if 4078  df-pw 4151  df-sn 4169  df-pr 4171  df-op 4175  df-uni 4428  df-iun 4513  df-br 4645  df-opab 4704  df-mpt 4721  df-id 5014  df-xp 5110  df-rel 5111  df-cnv 5112  df-co 5113  df-dm 5114  df-rn 5115  df-res 5116  df-ima 5117  df-iota 5839  df-fun 5878  df-fn 5879  df-f 5880  df-f1 5881  df-fo 5882  df-f1o 5883  df-fv 5884  df-ov 6638  df-oprab 6639  df-mpt2 6640  df-map 7844  df-homul 28560
This theorem is referenced by:  opsqrlem1  28969
  Copyright terms: Public domain W3C validator