![]() |
Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > HSE Home > Th. List > honegsubi | Structured version Visualization version GIF version |
Description: Relationship between Hilbert operator addition and subtraction. (Contributed by NM, 24-Aug-2006.) (New usage is discouraged.) |
Ref | Expression |
---|---|
hodseq.2 | ⊢ 𝑆: ℋ⟶ ℋ |
hodseq.3 | ⊢ 𝑇: ℋ⟶ ℋ |
Ref | Expression |
---|---|
honegsubi | ⊢ (𝑆 +op (-1 ·op 𝑇)) = (𝑆 −op 𝑇) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | hodseq.2 | . . . . . 6 ⊢ 𝑆: ℋ⟶ ℋ | |
2 | neg1cn 11162 | . . . . . . 7 ⊢ -1 ∈ ℂ | |
3 | hodseq.3 | . . . . . . 7 ⊢ 𝑇: ℋ⟶ ℋ | |
4 | homulcl 28746 | . . . . . . 7 ⊢ ((-1 ∈ ℂ ∧ 𝑇: ℋ⟶ ℋ) → (-1 ·op 𝑇): ℋ⟶ ℋ) | |
5 | 2, 3, 4 | mp2an 708 | . . . . . 6 ⊢ (-1 ·op 𝑇): ℋ⟶ ℋ |
6 | hosval 28727 | . . . . . 6 ⊢ ((𝑆: ℋ⟶ ℋ ∧ (-1 ·op 𝑇): ℋ⟶ ℋ ∧ 𝑥 ∈ ℋ) → ((𝑆 +op (-1 ·op 𝑇))‘𝑥) = ((𝑆‘𝑥) +ℎ ((-1 ·op 𝑇)‘𝑥))) | |
7 | 1, 5, 6 | mp3an12 1454 | . . . . 5 ⊢ (𝑥 ∈ ℋ → ((𝑆 +op (-1 ·op 𝑇))‘𝑥) = ((𝑆‘𝑥) +ℎ ((-1 ·op 𝑇)‘𝑥))) |
8 | 1 | ffvelrni 6398 | . . . . . . 7 ⊢ (𝑥 ∈ ℋ → (𝑆‘𝑥) ∈ ℋ) |
9 | 3 | ffvelrni 6398 | . . . . . . 7 ⊢ (𝑥 ∈ ℋ → (𝑇‘𝑥) ∈ ℋ) |
10 | hvsubval 28001 | . . . . . . 7 ⊢ (((𝑆‘𝑥) ∈ ℋ ∧ (𝑇‘𝑥) ∈ ℋ) → ((𝑆‘𝑥) −ℎ (𝑇‘𝑥)) = ((𝑆‘𝑥) +ℎ (-1 ·ℎ (𝑇‘𝑥)))) | |
11 | 8, 9, 10 | syl2anc 694 | . . . . . 6 ⊢ (𝑥 ∈ ℋ → ((𝑆‘𝑥) −ℎ (𝑇‘𝑥)) = ((𝑆‘𝑥) +ℎ (-1 ·ℎ (𝑇‘𝑥)))) |
12 | homval 28728 | . . . . . . . 8 ⊢ ((-1 ∈ ℂ ∧ 𝑇: ℋ⟶ ℋ ∧ 𝑥 ∈ ℋ) → ((-1 ·op 𝑇)‘𝑥) = (-1 ·ℎ (𝑇‘𝑥))) | |
13 | 2, 3, 12 | mp3an12 1454 | . . . . . . 7 ⊢ (𝑥 ∈ ℋ → ((-1 ·op 𝑇)‘𝑥) = (-1 ·ℎ (𝑇‘𝑥))) |
14 | 13 | oveq2d 6706 | . . . . . 6 ⊢ (𝑥 ∈ ℋ → ((𝑆‘𝑥) +ℎ ((-1 ·op 𝑇)‘𝑥)) = ((𝑆‘𝑥) +ℎ (-1 ·ℎ (𝑇‘𝑥)))) |
15 | 11, 14 | eqtr4d 2688 | . . . . 5 ⊢ (𝑥 ∈ ℋ → ((𝑆‘𝑥) −ℎ (𝑇‘𝑥)) = ((𝑆‘𝑥) +ℎ ((-1 ·op 𝑇)‘𝑥))) |
16 | 7, 15 | eqtr4d 2688 | . . . 4 ⊢ (𝑥 ∈ ℋ → ((𝑆 +op (-1 ·op 𝑇))‘𝑥) = ((𝑆‘𝑥) −ℎ (𝑇‘𝑥))) |
17 | hodval 28729 | . . . . 5 ⊢ ((𝑆: ℋ⟶ ℋ ∧ 𝑇: ℋ⟶ ℋ ∧ 𝑥 ∈ ℋ) → ((𝑆 −op 𝑇)‘𝑥) = ((𝑆‘𝑥) −ℎ (𝑇‘𝑥))) | |
18 | 1, 3, 17 | mp3an12 1454 | . . . 4 ⊢ (𝑥 ∈ ℋ → ((𝑆 −op 𝑇)‘𝑥) = ((𝑆‘𝑥) −ℎ (𝑇‘𝑥))) |
19 | 16, 18 | eqtr4d 2688 | . . 3 ⊢ (𝑥 ∈ ℋ → ((𝑆 +op (-1 ·op 𝑇))‘𝑥) = ((𝑆 −op 𝑇)‘𝑥)) |
20 | 19 | rgen 2951 | . 2 ⊢ ∀𝑥 ∈ ℋ ((𝑆 +op (-1 ·op 𝑇))‘𝑥) = ((𝑆 −op 𝑇)‘𝑥) |
21 | 1, 5 | hoaddcli 28755 | . . 3 ⊢ (𝑆 +op (-1 ·op 𝑇)): ℋ⟶ ℋ |
22 | 1, 3 | hosubcli 28756 | . . 3 ⊢ (𝑆 −op 𝑇): ℋ⟶ ℋ |
23 | 21, 22 | hoeqi 28748 | . 2 ⊢ (∀𝑥 ∈ ℋ ((𝑆 +op (-1 ·op 𝑇))‘𝑥) = ((𝑆 −op 𝑇)‘𝑥) ↔ (𝑆 +op (-1 ·op 𝑇)) = (𝑆 −op 𝑇)) |
24 | 20, 23 | mpbi 220 | 1 ⊢ (𝑆 +op (-1 ·op 𝑇)) = (𝑆 −op 𝑇) |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1523 ∈ wcel 2030 ∀wral 2941 ⟶wf 5922 ‘cfv 5926 (class class class)co 6690 ℂcc 9972 1c1 9975 -cneg 10305 ℋchil 27904 +ℎ cva 27905 ·ℎ csm 27906 −ℎ cmv 27910 +op chos 27923 ·op chot 27924 −op chod 27925 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1762 ax-4 1777 ax-5 1879 ax-6 1945 ax-7 1981 ax-8 2032 ax-9 2039 ax-10 2059 ax-11 2074 ax-12 2087 ax-13 2282 ax-ext 2631 ax-rep 4804 ax-sep 4814 ax-nul 4822 ax-pow 4873 ax-pr 4936 ax-un 6991 ax-resscn 10031 ax-1cn 10032 ax-icn 10033 ax-addcl 10034 ax-addrcl 10035 ax-mulcl 10036 ax-mulrcl 10037 ax-mulcom 10038 ax-addass 10039 ax-mulass 10040 ax-distr 10041 ax-i2m1 10042 ax-1ne0 10043 ax-1rid 10044 ax-rnegex 10045 ax-rrecex 10046 ax-cnre 10047 ax-pre-lttri 10048 ax-pre-lttrn 10049 ax-pre-ltadd 10050 ax-hilex 27984 ax-hfvadd 27985 ax-hfvmul 27990 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3or 1055 df-3an 1056 df-tru 1526 df-ex 1745 df-nf 1750 df-sb 1938 df-eu 2502 df-mo 2503 df-clab 2638 df-cleq 2644 df-clel 2647 df-nfc 2782 df-ne 2824 df-nel 2927 df-ral 2946 df-rex 2947 df-reu 2948 df-rab 2950 df-v 3233 df-sbc 3469 df-csb 3567 df-dif 3610 df-un 3612 df-in 3614 df-ss 3621 df-nul 3949 df-if 4120 df-pw 4193 df-sn 4211 df-pr 4213 df-op 4217 df-uni 4469 df-iun 4554 df-br 4686 df-opab 4746 df-mpt 4763 df-id 5053 df-po 5064 df-so 5065 df-xp 5149 df-rel 5150 df-cnv 5151 df-co 5152 df-dm 5153 df-rn 5154 df-res 5155 df-ima 5156 df-iota 5889 df-fun 5928 df-fn 5929 df-f 5930 df-f1 5931 df-fo 5932 df-f1o 5933 df-fv 5934 df-riota 6651 df-ov 6693 df-oprab 6694 df-mpt2 6695 df-er 7787 df-map 7901 df-en 7998 df-dom 7999 df-sdom 8000 df-pnf 10114 df-mnf 10115 df-ltxr 10117 df-sub 10306 df-neg 10307 df-hvsub 27956 df-hosum 28717 df-homul 28718 df-hodif 28719 |
This theorem is referenced by: honegsub 28786 hosubeq0i 28813 lnophdi 28989 bdophdi 29084 nmoptri2i 29086 |
Copyright terms: Public domain | W3C validator |