![]() |
Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > HSE Home > Th. List > hosmval | Structured version Visualization version GIF version |
Description: Value of the sum of two Hilbert space operators. (Contributed by NM, 9-Nov-2000.) (Revised by Mario Carneiro, 23-Aug-2014.) (New usage is discouraged.) |
Ref | Expression |
---|---|
hosmval | ⊢ ((𝑆: ℋ⟶ ℋ ∧ 𝑇: ℋ⟶ ℋ) → (𝑆 +op 𝑇) = (𝑥 ∈ ℋ ↦ ((𝑆‘𝑥) +ℎ (𝑇‘𝑥)))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ax-hilex 27984 | . . 3 ⊢ ℋ ∈ V | |
2 | 1, 1 | elmap 7928 | . 2 ⊢ (𝑆 ∈ ( ℋ ↑𝑚 ℋ) ↔ 𝑆: ℋ⟶ ℋ) |
3 | 1, 1 | elmap 7928 | . 2 ⊢ (𝑇 ∈ ( ℋ ↑𝑚 ℋ) ↔ 𝑇: ℋ⟶ ℋ) |
4 | fveq1 6228 | . . . . 5 ⊢ (𝑓 = 𝑆 → (𝑓‘𝑥) = (𝑆‘𝑥)) | |
5 | 4 | oveq1d 6705 | . . . 4 ⊢ (𝑓 = 𝑆 → ((𝑓‘𝑥) +ℎ (𝑔‘𝑥)) = ((𝑆‘𝑥) +ℎ (𝑔‘𝑥))) |
6 | 5 | mpteq2dv 4778 | . . 3 ⊢ (𝑓 = 𝑆 → (𝑥 ∈ ℋ ↦ ((𝑓‘𝑥) +ℎ (𝑔‘𝑥))) = (𝑥 ∈ ℋ ↦ ((𝑆‘𝑥) +ℎ (𝑔‘𝑥)))) |
7 | fveq1 6228 | . . . . 5 ⊢ (𝑔 = 𝑇 → (𝑔‘𝑥) = (𝑇‘𝑥)) | |
8 | 7 | oveq2d 6706 | . . . 4 ⊢ (𝑔 = 𝑇 → ((𝑆‘𝑥) +ℎ (𝑔‘𝑥)) = ((𝑆‘𝑥) +ℎ (𝑇‘𝑥))) |
9 | 8 | mpteq2dv 4778 | . . 3 ⊢ (𝑔 = 𝑇 → (𝑥 ∈ ℋ ↦ ((𝑆‘𝑥) +ℎ (𝑔‘𝑥))) = (𝑥 ∈ ℋ ↦ ((𝑆‘𝑥) +ℎ (𝑇‘𝑥)))) |
10 | df-hosum 28717 | . . 3 ⊢ +op = (𝑓 ∈ ( ℋ ↑𝑚 ℋ), 𝑔 ∈ ( ℋ ↑𝑚 ℋ) ↦ (𝑥 ∈ ℋ ↦ ((𝑓‘𝑥) +ℎ (𝑔‘𝑥)))) | |
11 | 1 | mptex 6527 | . . 3 ⊢ (𝑥 ∈ ℋ ↦ ((𝑆‘𝑥) +ℎ (𝑇‘𝑥))) ∈ V |
12 | 6, 9, 10, 11 | ovmpt2 6838 | . 2 ⊢ ((𝑆 ∈ ( ℋ ↑𝑚 ℋ) ∧ 𝑇 ∈ ( ℋ ↑𝑚 ℋ)) → (𝑆 +op 𝑇) = (𝑥 ∈ ℋ ↦ ((𝑆‘𝑥) +ℎ (𝑇‘𝑥)))) |
13 | 2, 3, 12 | syl2anbr 496 | 1 ⊢ ((𝑆: ℋ⟶ ℋ ∧ 𝑇: ℋ⟶ ℋ) → (𝑆 +op 𝑇) = (𝑥 ∈ ℋ ↦ ((𝑆‘𝑥) +ℎ (𝑇‘𝑥)))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 383 = wceq 1523 ∈ wcel 2030 ↦ cmpt 4762 ⟶wf 5922 ‘cfv 5926 (class class class)co 6690 ↑𝑚 cmap 7899 ℋchil 27904 +ℎ cva 27905 +op chos 27923 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1762 ax-4 1777 ax-5 1879 ax-6 1945 ax-7 1981 ax-8 2032 ax-9 2039 ax-10 2059 ax-11 2074 ax-12 2087 ax-13 2282 ax-ext 2631 ax-rep 4804 ax-sep 4814 ax-nul 4822 ax-pow 4873 ax-pr 4936 ax-un 6991 ax-hilex 27984 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3an 1056 df-tru 1526 df-ex 1745 df-nf 1750 df-sb 1938 df-eu 2502 df-mo 2503 df-clab 2638 df-cleq 2644 df-clel 2647 df-nfc 2782 df-ne 2824 df-ral 2946 df-rex 2947 df-reu 2948 df-rab 2950 df-v 3233 df-sbc 3469 df-csb 3567 df-dif 3610 df-un 3612 df-in 3614 df-ss 3621 df-nul 3949 df-if 4120 df-pw 4193 df-sn 4211 df-pr 4213 df-op 4217 df-uni 4469 df-iun 4554 df-br 4686 df-opab 4746 df-mpt 4763 df-id 5053 df-xp 5149 df-rel 5150 df-cnv 5151 df-co 5152 df-dm 5153 df-rn 5154 df-res 5155 df-ima 5156 df-iota 5889 df-fun 5928 df-fn 5929 df-f 5930 df-f1 5931 df-fo 5932 df-f1o 5933 df-fv 5934 df-ov 6693 df-oprab 6694 df-mpt2 6695 df-map 7901 df-hosum 28717 |
This theorem is referenced by: hosval 28727 hoaddcl 28745 |
Copyright terms: Public domain | W3C validator |