![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > hpgbr | Structured version Visualization version GIF version |
Description: Half-planes : property for points 𝐴 and 𝐵 to belong to the same open half plane delimited by line 𝐷. Definition 9.7 of [Schwabhauser] p. 71. (Contributed by Thierry Arnoux, 4-Mar-2020.) |
Ref | Expression |
---|---|
ishpg.p | ⊢ 𝑃 = (Base‘𝐺) |
ishpg.i | ⊢ 𝐼 = (Itv‘𝐺) |
ishpg.l | ⊢ 𝐿 = (LineG‘𝐺) |
ishpg.o | ⊢ 𝑂 = {〈𝑎, 𝑏〉 ∣ ((𝑎 ∈ (𝑃 ∖ 𝐷) ∧ 𝑏 ∈ (𝑃 ∖ 𝐷)) ∧ ∃𝑡 ∈ 𝐷 𝑡 ∈ (𝑎𝐼𝑏))} |
ishpg.g | ⊢ (𝜑 → 𝐺 ∈ TarskiG) |
ishpg.d | ⊢ (𝜑 → 𝐷 ∈ ran 𝐿) |
hpgbr.a | ⊢ (𝜑 → 𝐴 ∈ 𝑃) |
hpgbr.b | ⊢ (𝜑 → 𝐵 ∈ 𝑃) |
Ref | Expression |
---|---|
hpgbr | ⊢ (𝜑 → (𝐴((hpG‘𝐺)‘𝐷)𝐵 ↔ ∃𝑐 ∈ 𝑃 (𝐴𝑂𝑐 ∧ 𝐵𝑂𝑐))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ishpg.p | . . . . 5 ⊢ 𝑃 = (Base‘𝐺) | |
2 | ishpg.i | . . . . 5 ⊢ 𝐼 = (Itv‘𝐺) | |
3 | ishpg.l | . . . . 5 ⊢ 𝐿 = (LineG‘𝐺) | |
4 | ishpg.o | . . . . 5 ⊢ 𝑂 = {〈𝑎, 𝑏〉 ∣ ((𝑎 ∈ (𝑃 ∖ 𝐷) ∧ 𝑏 ∈ (𝑃 ∖ 𝐷)) ∧ ∃𝑡 ∈ 𝐷 𝑡 ∈ (𝑎𝐼𝑏))} | |
5 | ishpg.g | . . . . 5 ⊢ (𝜑 → 𝐺 ∈ TarskiG) | |
6 | ishpg.d | . . . . 5 ⊢ (𝜑 → 𝐷 ∈ ran 𝐿) | |
7 | 1, 2, 3, 4, 5, 6 | ishpg 25696 | . . . 4 ⊢ (𝜑 → ((hpG‘𝐺)‘𝐷) = {〈𝑎, 𝑏〉 ∣ ∃𝑐 ∈ 𝑃 (𝑎𝑂𝑐 ∧ 𝑏𝑂𝑐)}) |
8 | simpl 472 | . . . . . . . 8 ⊢ ((𝑎 = 𝑢 ∧ 𝑏 = 𝑣) → 𝑎 = 𝑢) | |
9 | 8 | breq1d 4695 | . . . . . . 7 ⊢ ((𝑎 = 𝑢 ∧ 𝑏 = 𝑣) → (𝑎𝑂𝑐 ↔ 𝑢𝑂𝑐)) |
10 | simpr 476 | . . . . . . . 8 ⊢ ((𝑎 = 𝑢 ∧ 𝑏 = 𝑣) → 𝑏 = 𝑣) | |
11 | 10 | breq1d 4695 | . . . . . . 7 ⊢ ((𝑎 = 𝑢 ∧ 𝑏 = 𝑣) → (𝑏𝑂𝑐 ↔ 𝑣𝑂𝑐)) |
12 | 9, 11 | anbi12d 747 | . . . . . 6 ⊢ ((𝑎 = 𝑢 ∧ 𝑏 = 𝑣) → ((𝑎𝑂𝑐 ∧ 𝑏𝑂𝑐) ↔ (𝑢𝑂𝑐 ∧ 𝑣𝑂𝑐))) |
13 | 12 | rexbidv 3081 | . . . . 5 ⊢ ((𝑎 = 𝑢 ∧ 𝑏 = 𝑣) → (∃𝑐 ∈ 𝑃 (𝑎𝑂𝑐 ∧ 𝑏𝑂𝑐) ↔ ∃𝑐 ∈ 𝑃 (𝑢𝑂𝑐 ∧ 𝑣𝑂𝑐))) |
14 | 13 | cbvopabv 4755 | . . . 4 ⊢ {〈𝑎, 𝑏〉 ∣ ∃𝑐 ∈ 𝑃 (𝑎𝑂𝑐 ∧ 𝑏𝑂𝑐)} = {〈𝑢, 𝑣〉 ∣ ∃𝑐 ∈ 𝑃 (𝑢𝑂𝑐 ∧ 𝑣𝑂𝑐)} |
15 | 7, 14 | syl6eq 2701 | . . 3 ⊢ (𝜑 → ((hpG‘𝐺)‘𝐷) = {〈𝑢, 𝑣〉 ∣ ∃𝑐 ∈ 𝑃 (𝑢𝑂𝑐 ∧ 𝑣𝑂𝑐)}) |
16 | 15 | breqd 4696 | . 2 ⊢ (𝜑 → (𝐴((hpG‘𝐺)‘𝐷)𝐵 ↔ 𝐴{〈𝑢, 𝑣〉 ∣ ∃𝑐 ∈ 𝑃 (𝑢𝑂𝑐 ∧ 𝑣𝑂𝑐)}𝐵)) |
17 | hpgbr.a | . . 3 ⊢ (𝜑 → 𝐴 ∈ 𝑃) | |
18 | hpgbr.b | . . 3 ⊢ (𝜑 → 𝐵 ∈ 𝑃) | |
19 | simpl 472 | . . . . . . 7 ⊢ ((𝑢 = 𝐴 ∧ 𝑣 = 𝐵) → 𝑢 = 𝐴) | |
20 | 19 | breq1d 4695 | . . . . . 6 ⊢ ((𝑢 = 𝐴 ∧ 𝑣 = 𝐵) → (𝑢𝑂𝑐 ↔ 𝐴𝑂𝑐)) |
21 | simpr 476 | . . . . . . 7 ⊢ ((𝑢 = 𝐴 ∧ 𝑣 = 𝐵) → 𝑣 = 𝐵) | |
22 | 21 | breq1d 4695 | . . . . . 6 ⊢ ((𝑢 = 𝐴 ∧ 𝑣 = 𝐵) → (𝑣𝑂𝑐 ↔ 𝐵𝑂𝑐)) |
23 | 20, 22 | anbi12d 747 | . . . . 5 ⊢ ((𝑢 = 𝐴 ∧ 𝑣 = 𝐵) → ((𝑢𝑂𝑐 ∧ 𝑣𝑂𝑐) ↔ (𝐴𝑂𝑐 ∧ 𝐵𝑂𝑐))) |
24 | 23 | rexbidv 3081 | . . . 4 ⊢ ((𝑢 = 𝐴 ∧ 𝑣 = 𝐵) → (∃𝑐 ∈ 𝑃 (𝑢𝑂𝑐 ∧ 𝑣𝑂𝑐) ↔ ∃𝑐 ∈ 𝑃 (𝐴𝑂𝑐 ∧ 𝐵𝑂𝑐))) |
25 | eqid 2651 | . . . 4 ⊢ {〈𝑢, 𝑣〉 ∣ ∃𝑐 ∈ 𝑃 (𝑢𝑂𝑐 ∧ 𝑣𝑂𝑐)} = {〈𝑢, 𝑣〉 ∣ ∃𝑐 ∈ 𝑃 (𝑢𝑂𝑐 ∧ 𝑣𝑂𝑐)} | |
26 | 24, 25 | brabga 5018 | . . 3 ⊢ ((𝐴 ∈ 𝑃 ∧ 𝐵 ∈ 𝑃) → (𝐴{〈𝑢, 𝑣〉 ∣ ∃𝑐 ∈ 𝑃 (𝑢𝑂𝑐 ∧ 𝑣𝑂𝑐)}𝐵 ↔ ∃𝑐 ∈ 𝑃 (𝐴𝑂𝑐 ∧ 𝐵𝑂𝑐))) |
27 | 17, 18, 26 | syl2anc 694 | . 2 ⊢ (𝜑 → (𝐴{〈𝑢, 𝑣〉 ∣ ∃𝑐 ∈ 𝑃 (𝑢𝑂𝑐 ∧ 𝑣𝑂𝑐)}𝐵 ↔ ∃𝑐 ∈ 𝑃 (𝐴𝑂𝑐 ∧ 𝐵𝑂𝑐))) |
28 | 16, 27 | bitrd 268 | 1 ⊢ (𝜑 → (𝐴((hpG‘𝐺)‘𝐷)𝐵 ↔ ∃𝑐 ∈ 𝑃 (𝐴𝑂𝑐 ∧ 𝐵𝑂𝑐))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 196 ∧ wa 383 = wceq 1523 ∈ wcel 2030 ∃wrex 2942 ∖ cdif 3604 class class class wbr 4685 {copab 4745 ran crn 5144 ‘cfv 5926 (class class class)co 6690 Basecbs 15904 TarskiGcstrkg 25374 Itvcitv 25380 LineGclng 25381 hpGchpg 25694 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1762 ax-4 1777 ax-5 1879 ax-6 1945 ax-7 1981 ax-8 2032 ax-9 2039 ax-10 2059 ax-11 2074 ax-12 2087 ax-13 2282 ax-ext 2631 ax-rep 4804 ax-sep 4814 ax-nul 4822 ax-pow 4873 ax-pr 4936 ax-un 6991 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3an 1056 df-tru 1526 df-ex 1745 df-nf 1750 df-sb 1938 df-eu 2502 df-mo 2503 df-clab 2638 df-cleq 2644 df-clel 2647 df-nfc 2782 df-ne 2824 df-ral 2946 df-rex 2947 df-reu 2948 df-rab 2950 df-v 3233 df-sbc 3469 df-csb 3567 df-dif 3610 df-un 3612 df-in 3614 df-ss 3621 df-nul 3949 df-if 4120 df-pw 4193 df-sn 4211 df-pr 4213 df-op 4217 df-uni 4469 df-iun 4554 df-br 4686 df-opab 4746 df-mpt 4763 df-id 5053 df-xp 5149 df-rel 5150 df-cnv 5151 df-co 5152 df-dm 5153 df-rn 5154 df-res 5155 df-ima 5156 df-iota 5889 df-fun 5928 df-fn 5929 df-f 5930 df-f1 5931 df-fo 5932 df-f1o 5933 df-fv 5934 df-ov 6693 df-hpg 25695 |
This theorem is referenced by: hpgne1 25698 hpgne2 25699 lnopp2hpgb 25700 hpgid 25703 hpgcom 25704 hpgtr 25705 |
Copyright terms: Public domain | W3C validator |