MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  hsmex Structured version   Visualization version   GIF version

Theorem hsmex 9856
Description: The collection of hereditarily size-limited well-founded sets comprise a set. The proof is that of Randall Holmes at http://math.boisestate.edu/~holmes/holmes/hereditary.pdf, with modifications to use Hartogs' theorem instead of the weak variant (inconsequentially weakening some intermediate results), and making the well-foundedness condition explicit to avoid a direct dependence on ax-reg 9058. (Contributed by Stefan O'Rear, 14-Feb-2015.)
Assertion
Ref Expression
hsmex (𝑋𝑉 → {𝑠 (𝑅1 “ On) ∣ ∀𝑥 ∈ (TC‘{𝑠})𝑥𝑋} ∈ V)
Distinct variable group:   𝑥,𝑠,𝑋
Allowed substitution hints:   𝑉(𝑥,𝑠)

Proof of Theorem hsmex
Dummy variables 𝑎 𝑏 𝑐 𝑑 𝑒 𝑓 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 breq2 5072 . . . . 5 (𝑎 = 𝑋 → (𝑥𝑎𝑥𝑋))
21ralbidv 3199 . . . 4 (𝑎 = 𝑋 → (∀𝑥 ∈ (TC‘{𝑠})𝑥𝑎 ↔ ∀𝑥 ∈ (TC‘{𝑠})𝑥𝑋))
32rabbidv 3482 . . 3 (𝑎 = 𝑋 → {𝑠 (𝑅1 “ On) ∣ ∀𝑥 ∈ (TC‘{𝑠})𝑥𝑎} = {𝑠 (𝑅1 “ On) ∣ ∀𝑥 ∈ (TC‘{𝑠})𝑥𝑋})
43eleq1d 2899 . 2 (𝑎 = 𝑋 → ({𝑠 (𝑅1 “ On) ∣ ∀𝑥 ∈ (TC‘{𝑠})𝑥𝑎} ∈ V ↔ {𝑠 (𝑅1 “ On) ∣ ∀𝑥 ∈ (TC‘{𝑠})𝑥𝑋} ∈ V))
5 vex 3499 . . 3 𝑎 ∈ V
6 eqid 2823 . . 3 (rec((𝑑 ∈ V ↦ (har‘𝒫 (𝑎 × 𝑑))), (har‘𝒫 𝑎)) ↾ ω) = (rec((𝑑 ∈ V ↦ (har‘𝒫 (𝑎 × 𝑑))), (har‘𝒫 𝑎)) ↾ ω)
7 rdgeq2 8050 . . . . . 6 (𝑒 = 𝑏 → rec((𝑓 ∈ V ↦ 𝑓), 𝑒) = rec((𝑓 ∈ V ↦ 𝑓), 𝑏))
8 unieq 4851 . . . . . . . 8 (𝑓 = 𝑐 𝑓 = 𝑐)
98cbvmptv 5171 . . . . . . 7 (𝑓 ∈ V ↦ 𝑓) = (𝑐 ∈ V ↦ 𝑐)
10 rdgeq1 8049 . . . . . . 7 ((𝑓 ∈ V ↦ 𝑓) = (𝑐 ∈ V ↦ 𝑐) → rec((𝑓 ∈ V ↦ 𝑓), 𝑏) = rec((𝑐 ∈ V ↦ 𝑐), 𝑏))
119, 10ax-mp 5 . . . . . 6 rec((𝑓 ∈ V ↦ 𝑓), 𝑏) = rec((𝑐 ∈ V ↦ 𝑐), 𝑏)
127, 11syl6eq 2874 . . . . 5 (𝑒 = 𝑏 → rec((𝑓 ∈ V ↦ 𝑓), 𝑒) = rec((𝑐 ∈ V ↦ 𝑐), 𝑏))
1312reseq1d 5854 . . . 4 (𝑒 = 𝑏 → (rec((𝑓 ∈ V ↦ 𝑓), 𝑒) ↾ ω) = (rec((𝑐 ∈ V ↦ 𝑐), 𝑏) ↾ ω))
1413cbvmptv 5171 . . 3 (𝑒 ∈ V ↦ (rec((𝑓 ∈ V ↦ 𝑓), 𝑒) ↾ ω)) = (𝑏 ∈ V ↦ (rec((𝑐 ∈ V ↦ 𝑐), 𝑏) ↾ ω))
15 eqid 2823 . . 3 {𝑠 (𝑅1 “ On) ∣ ∀𝑥 ∈ (TC‘{𝑠})𝑥𝑎} = {𝑠 (𝑅1 “ On) ∣ ∀𝑥 ∈ (TC‘{𝑠})𝑥𝑎}
16 eqid 2823 . . 3 OrdIso( E , (rank “ (((𝑒 ∈ V ↦ (rec((𝑓 ∈ V ↦ 𝑓), 𝑒) ↾ ω))‘𝑧)‘𝑦))) = OrdIso( E , (rank “ (((𝑒 ∈ V ↦ (rec((𝑓 ∈ V ↦ 𝑓), 𝑒) ↾ ω))‘𝑧)‘𝑦)))
175, 6, 14, 15, 16hsmexlem6 9855 . 2 {𝑠 (𝑅1 “ On) ∣ ∀𝑥 ∈ (TC‘{𝑠})𝑥𝑎} ∈ V
184, 17vtoclg 3569 1 (𝑋𝑉 → {𝑠 (𝑅1 “ On) ∣ ∀𝑥 ∈ (TC‘{𝑠})𝑥𝑋} ∈ V)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1537  wcel 2114  wral 3140  {crab 3144  Vcvv 3496  𝒫 cpw 4541  {csn 4569   cuni 4840   class class class wbr 5068  cmpt 5148   E cep 5466   × cxp 5555  cres 5559  cima 5560  Oncon0 6193  cfv 6357  ωcom 7582  reccrdg 8047  cdom 8509  OrdIsocoi 8975  harchar 9022  TCctc 9180  𝑅1cr1 9193  rankcrnk 9194
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2795  ax-rep 5192  ax-sep 5205  ax-nul 5212  ax-pow 5268  ax-pr 5332  ax-un 7463  ax-inf2 9106
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2802  df-cleq 2816  df-clel 2895  df-nfc 2965  df-ne 3019  df-ral 3145  df-rex 3146  df-reu 3147  df-rmo 3148  df-rab 3149  df-v 3498  df-sbc 3775  df-csb 3886  df-dif 3941  df-un 3943  df-in 3945  df-ss 3954  df-pss 3956  df-nul 4294  df-if 4470  df-pw 4543  df-sn 4570  df-pr 4572  df-tp 4574  df-op 4576  df-uni 4841  df-int 4879  df-iun 4923  df-iin 4924  df-br 5069  df-opab 5131  df-mpt 5149  df-tr 5175  df-id 5462  df-eprel 5467  df-po 5476  df-so 5477  df-fr 5516  df-se 5517  df-we 5518  df-xp 5563  df-rel 5564  df-cnv 5565  df-co 5566  df-dm 5567  df-rn 5568  df-res 5569  df-ima 5570  df-pred 6150  df-ord 6196  df-on 6197  df-lim 6198  df-suc 6199  df-iota 6316  df-fun 6359  df-fn 6360  df-f 6361  df-f1 6362  df-fo 6363  df-f1o 6364  df-fv 6365  df-isom 6366  df-riota 7116  df-om 7583  df-1st 7691  df-2nd 7692  df-wrecs 7949  df-smo 7985  df-recs 8010  df-rdg 8048  df-er 8291  df-en 8512  df-dom 8513  df-sdom 8514  df-oi 8976  df-har 9024  df-wdom 9025  df-tc 9181  df-r1 9195  df-rank 9196
This theorem is referenced by:  hsmex2  9857
  Copyright terms: Public domain W3C validator