MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  hsmexlem1 Structured version   Visualization version   GIF version

Theorem hsmexlem1 9850
Description: Lemma for hsmex 9856. Bound the order type of a limited-cardinality set of ordinals. (Contributed by Stefan O'Rear, 14-Feb-2015.) (Revised by Mario Carneiro, 26-Jun-2015.)
Hypothesis
Ref Expression
hsmexlem.o 𝑂 = OrdIso( E , 𝐴)
Assertion
Ref Expression
hsmexlem1 ((𝐴 ⊆ On ∧ 𝐴* 𝐵) → dom 𝑂 ∈ (har‘𝒫 𝐵))

Proof of Theorem hsmexlem1
StepHypRef Expression
1 hsmexlem.o . . . 4 𝑂 = OrdIso( E , 𝐴)
21oicl 8995 . . 3 Ord dom 𝑂
3 relwdom 9032 . . . . . . . 8 Rel ≼*
43brrelex1i 5610 . . . . . . 7 (𝐴* 𝐵𝐴 ∈ V)
54adantl 484 . . . . . 6 ((𝐴 ⊆ On ∧ 𝐴* 𝐵) → 𝐴 ∈ V)
6 uniexg 7468 . . . . . 6 (𝐴 ∈ V → 𝐴 ∈ V)
7 sucexg 7527 . . . . . 6 ( 𝐴 ∈ V → suc 𝐴 ∈ V)
85, 6, 73syl 18 . . . . 5 ((𝐴 ⊆ On ∧ 𝐴* 𝐵) → suc 𝐴 ∈ V)
91oif 8996 . . . . . . 7 𝑂:dom 𝑂𝐴
10 onsucuni 7545 . . . . . . . 8 (𝐴 ⊆ On → 𝐴 ⊆ suc 𝐴)
1110adantr 483 . . . . . . 7 ((𝐴 ⊆ On ∧ 𝐴* 𝐵) → 𝐴 ⊆ suc 𝐴)
12 fss 6529 . . . . . . 7 ((𝑂:dom 𝑂𝐴𝐴 ⊆ suc 𝐴) → 𝑂:dom 𝑂⟶suc 𝐴)
139, 11, 12sylancr 589 . . . . . 6 ((𝐴 ⊆ On ∧ 𝐴* 𝐵) → 𝑂:dom 𝑂⟶suc 𝐴)
141oismo 9006 . . . . . . . 8 (𝐴 ⊆ On → (Smo 𝑂 ∧ ran 𝑂 = 𝐴))
1514adantr 483 . . . . . . 7 ((𝐴 ⊆ On ∧ 𝐴* 𝐵) → (Smo 𝑂 ∧ ran 𝑂 = 𝐴))
1615simpld 497 . . . . . 6 ((𝐴 ⊆ On ∧ 𝐴* 𝐵) → Smo 𝑂)
17 ssorduni 7502 . . . . . . . 8 (𝐴 ⊆ On → Ord 𝐴)
1817adantr 483 . . . . . . 7 ((𝐴 ⊆ On ∧ 𝐴* 𝐵) → Ord 𝐴)
19 ordsuc 7531 . . . . . . 7 (Ord 𝐴 ↔ Ord suc 𝐴)
2018, 19sylib 220 . . . . . 6 ((𝐴 ⊆ On ∧ 𝐴* 𝐵) → Ord suc 𝐴)
21 smorndom 8007 . . . . . 6 ((𝑂:dom 𝑂⟶suc 𝐴 ∧ Smo 𝑂 ∧ Ord suc 𝐴) → dom 𝑂 ⊆ suc 𝐴)
2213, 16, 20, 21syl3anc 1367 . . . . 5 ((𝐴 ⊆ On ∧ 𝐴* 𝐵) → dom 𝑂 ⊆ suc 𝐴)
238, 22ssexd 5230 . . . 4 ((𝐴 ⊆ On ∧ 𝐴* 𝐵) → dom 𝑂 ∈ V)
24 elong 6201 . . . 4 (dom 𝑂 ∈ V → (dom 𝑂 ∈ On ↔ Ord dom 𝑂))
2523, 24syl 17 . . 3 ((𝐴 ⊆ On ∧ 𝐴* 𝐵) → (dom 𝑂 ∈ On ↔ Ord dom 𝑂))
262, 25mpbiri 260 . 2 ((𝐴 ⊆ On ∧ 𝐴* 𝐵) → dom 𝑂 ∈ On)
27 canth2g 8673 . . . 4 (dom 𝑂 ∈ V → dom 𝑂 ≺ 𝒫 dom 𝑂)
28 sdomdom 8539 . . . 4 (dom 𝑂 ≺ 𝒫 dom 𝑂 → dom 𝑂 ≼ 𝒫 dom 𝑂)
2923, 27, 283syl 18 . . 3 ((𝐴 ⊆ On ∧ 𝐴* 𝐵) → dom 𝑂 ≼ 𝒫 dom 𝑂)
30 simpl 485 . . . . . . . . . . 11 ((𝐴 ⊆ On ∧ 𝐴* 𝐵) → 𝐴 ⊆ On)
31 epweon 7499 . . . . . . . . . . 11 E We On
32 wess 5544 . . . . . . . . . . 11 (𝐴 ⊆ On → ( E We On → E We 𝐴))
3330, 31, 32mpisyl 21 . . . . . . . . . 10 ((𝐴 ⊆ On ∧ 𝐴* 𝐵) → E We 𝐴)
34 epse 5540 . . . . . . . . . 10 E Se 𝐴
351oiiso2 8997 . . . . . . . . . 10 (( E We 𝐴 ∧ E Se 𝐴) → 𝑂 Isom E , E (dom 𝑂, ran 𝑂))
3633, 34, 35sylancl 588 . . . . . . . . 9 ((𝐴 ⊆ On ∧ 𝐴* 𝐵) → 𝑂 Isom E , E (dom 𝑂, ran 𝑂))
37 isof1o 7078 . . . . . . . . 9 (𝑂 Isom E , E (dom 𝑂, ran 𝑂) → 𝑂:dom 𝑂1-1-onto→ran 𝑂)
3836, 37syl 17 . . . . . . . 8 ((𝐴 ⊆ On ∧ 𝐴* 𝐵) → 𝑂:dom 𝑂1-1-onto→ran 𝑂)
3915simprd 498 . . . . . . . . 9 ((𝐴 ⊆ On ∧ 𝐴* 𝐵) → ran 𝑂 = 𝐴)
4039f1oeq3d 6614 . . . . . . . 8 ((𝐴 ⊆ On ∧ 𝐴* 𝐵) → (𝑂:dom 𝑂1-1-onto→ran 𝑂𝑂:dom 𝑂1-1-onto𝐴))
4138, 40mpbid 234 . . . . . . 7 ((𝐴 ⊆ On ∧ 𝐴* 𝐵) → 𝑂:dom 𝑂1-1-onto𝐴)
42 f1oen2g 8528 . . . . . . 7 ((dom 𝑂 ∈ On ∧ 𝐴 ∈ V ∧ 𝑂:dom 𝑂1-1-onto𝐴) → dom 𝑂𝐴)
4326, 5, 41, 42syl3anc 1367 . . . . . 6 ((𝐴 ⊆ On ∧ 𝐴* 𝐵) → dom 𝑂𝐴)
44 endom 8538 . . . . . 6 (dom 𝑂𝐴 → dom 𝑂𝐴)
45 domwdom 9040 . . . . . 6 (dom 𝑂𝐴 → dom 𝑂* 𝐴)
4643, 44, 453syl 18 . . . . 5 ((𝐴 ⊆ On ∧ 𝐴* 𝐵) → dom 𝑂* 𝐴)
47 wdomtr 9041 . . . . 5 ((dom 𝑂* 𝐴𝐴* 𝐵) → dom 𝑂* 𝐵)
4846, 47sylancom 590 . . . 4 ((𝐴 ⊆ On ∧ 𝐴* 𝐵) → dom 𝑂* 𝐵)
49 wdompwdom 9044 . . . 4 (dom 𝑂* 𝐵 → 𝒫 dom 𝑂 ≼ 𝒫 𝐵)
5048, 49syl 17 . . 3 ((𝐴 ⊆ On ∧ 𝐴* 𝐵) → 𝒫 dom 𝑂 ≼ 𝒫 𝐵)
51 domtr 8564 . . 3 ((dom 𝑂 ≼ 𝒫 dom 𝑂 ∧ 𝒫 dom 𝑂 ≼ 𝒫 𝐵) → dom 𝑂 ≼ 𝒫 𝐵)
5229, 50, 51syl2anc 586 . 2 ((𝐴 ⊆ On ∧ 𝐴* 𝐵) → dom 𝑂 ≼ 𝒫 𝐵)
53 elharval 9029 . 2 (dom 𝑂 ∈ (har‘𝒫 𝐵) ↔ (dom 𝑂 ∈ On ∧ dom 𝑂 ≼ 𝒫 𝐵))
5426, 52, 53sylanbrc 585 1 ((𝐴 ⊆ On ∧ 𝐴* 𝐵) → dom 𝑂 ∈ (har‘𝒫 𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wa 398   = wceq 1537  wcel 2114  Vcvv 3496  wss 3938  𝒫 cpw 4541   cuni 4840   class class class wbr 5068   E cep 5466   Se wse 5514   We wwe 5515  dom cdm 5557  ran crn 5558  Ord word 6192  Oncon0 6193  suc csuc 6195  wf 6353  1-1-ontowf1o 6356  cfv 6357   Isom wiso 6358  Smo wsmo 7984  cen 8508  cdom 8509  csdm 8510  OrdIsocoi 8975  harchar 9022  * cwdom 9023
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2795  ax-rep 5192  ax-sep 5205  ax-nul 5212  ax-pow 5268  ax-pr 5332  ax-un 7463
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2802  df-cleq 2816  df-clel 2895  df-nfc 2965  df-ne 3019  df-ral 3145  df-rex 3146  df-reu 3147  df-rmo 3148  df-rab 3149  df-v 3498  df-sbc 3775  df-csb 3886  df-dif 3941  df-un 3943  df-in 3945  df-ss 3954  df-pss 3956  df-nul 4294  df-if 4470  df-pw 4543  df-sn 4570  df-pr 4572  df-tp 4574  df-op 4576  df-uni 4841  df-iun 4923  df-br 5069  df-opab 5131  df-mpt 5149  df-tr 5175  df-id 5462  df-eprel 5467  df-po 5476  df-so 5477  df-fr 5516  df-se 5517  df-we 5518  df-xp 5563  df-rel 5564  df-cnv 5565  df-co 5566  df-dm 5567  df-rn 5568  df-res 5569  df-ima 5570  df-pred 6150  df-ord 6196  df-on 6197  df-lim 6198  df-suc 6199  df-iota 6316  df-fun 6359  df-fn 6360  df-f 6361  df-f1 6362  df-fo 6363  df-f1o 6364  df-fv 6365  df-isom 6366  df-riota 7116  df-wrecs 7949  df-smo 7985  df-recs 8010  df-er 8291  df-en 8512  df-dom 8513  df-sdom 8514  df-oi 8976  df-har 9024  df-wdom 9025
This theorem is referenced by:  hsmexlem2  9851  hsmexlem4  9853
  Copyright terms: Public domain W3C validator