MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  hsmexlem3 Structured version   Visualization version   GIF version

Theorem hsmexlem3 9852
Description: Lemma for hsmex 9856. Clear 𝐼 hypothesis and extend previous result by dominance. Note that this could be substantially strengthened, e.g., using the weak Hartogs function, but all we need here is that there be *some* dominating ordinal. (Contributed by Stefan O'Rear, 14-Feb-2015.) (Revised by Mario Carneiro, 26-Jun-2015.)
Hypotheses
Ref Expression
hsmexlem.f 𝐹 = OrdIso( E , 𝐵)
hsmexlem.g 𝐺 = OrdIso( E , 𝑎𝐴 𝐵)
Assertion
Ref Expression
hsmexlem3 (((𝐴* 𝐷𝐶 ∈ On) ∧ ∀𝑎𝐴 (𝐵 ∈ 𝒫 On ∧ dom 𝐹𝐶)) → dom 𝐺 ∈ (har‘𝒫 (𝐷 × 𝐶)))
Distinct variable groups:   𝐴,𝑎   𝐶,𝑎
Allowed substitution hints:   𝐵(𝑎)   𝐷(𝑎)   𝐹(𝑎)   𝐺(𝑎)

Proof of Theorem hsmexlem3
StepHypRef Expression
1 wdomref 9038 . . . . 5 (𝐶 ∈ On → 𝐶* 𝐶)
2 xpwdomg 9051 . . . . 5 ((𝐴* 𝐷𝐶* 𝐶) → (𝐴 × 𝐶) ≼* (𝐷 × 𝐶))
31, 2sylan2 594 . . . 4 ((𝐴* 𝐷𝐶 ∈ On) → (𝐴 × 𝐶) ≼* (𝐷 × 𝐶))
4 wdompwdom 9044 . . . 4 ((𝐴 × 𝐶) ≼* (𝐷 × 𝐶) → 𝒫 (𝐴 × 𝐶) ≼ 𝒫 (𝐷 × 𝐶))
5 harword 9031 . . . 4 (𝒫 (𝐴 × 𝐶) ≼ 𝒫 (𝐷 × 𝐶) → (har‘𝒫 (𝐴 × 𝐶)) ⊆ (har‘𝒫 (𝐷 × 𝐶)))
63, 4, 53syl 18 . . 3 ((𝐴* 𝐷𝐶 ∈ On) → (har‘𝒫 (𝐴 × 𝐶)) ⊆ (har‘𝒫 (𝐷 × 𝐶)))
76adantr 483 . 2 (((𝐴* 𝐷𝐶 ∈ On) ∧ ∀𝑎𝐴 (𝐵 ∈ 𝒫 On ∧ dom 𝐹𝐶)) → (har‘𝒫 (𝐴 × 𝐶)) ⊆ (har‘𝒫 (𝐷 × 𝐶)))
8 relwdom 9032 . . . . . 6 Rel ≼*
98brrelex1i 5610 . . . . 5 (𝐴* 𝐷𝐴 ∈ V)
109adantr 483 . . . 4 ((𝐴* 𝐷𝐶 ∈ On) → 𝐴 ∈ V)
1110adantr 483 . . 3 (((𝐴* 𝐷𝐶 ∈ On) ∧ ∀𝑎𝐴 (𝐵 ∈ 𝒫 On ∧ dom 𝐹𝐶)) → 𝐴 ∈ V)
12 simplr 767 . . 3 (((𝐴* 𝐷𝐶 ∈ On) ∧ ∀𝑎𝐴 (𝐵 ∈ 𝒫 On ∧ dom 𝐹𝐶)) → 𝐶 ∈ On)
13 simpr 487 . . 3 (((𝐴* 𝐷𝐶 ∈ On) ∧ ∀𝑎𝐴 (𝐵 ∈ 𝒫 On ∧ dom 𝐹𝐶)) → ∀𝑎𝐴 (𝐵 ∈ 𝒫 On ∧ dom 𝐹𝐶))
14 hsmexlem.f . . . 4 𝐹 = OrdIso( E , 𝐵)
15 hsmexlem.g . . . 4 𝐺 = OrdIso( E , 𝑎𝐴 𝐵)
1614, 15hsmexlem2 9851 . . 3 ((𝐴 ∈ V ∧ 𝐶 ∈ On ∧ ∀𝑎𝐴 (𝐵 ∈ 𝒫 On ∧ dom 𝐹𝐶)) → dom 𝐺 ∈ (har‘𝒫 (𝐴 × 𝐶)))
1711, 12, 13, 16syl3anc 1367 . 2 (((𝐴* 𝐷𝐶 ∈ On) ∧ ∀𝑎𝐴 (𝐵 ∈ 𝒫 On ∧ dom 𝐹𝐶)) → dom 𝐺 ∈ (har‘𝒫 (𝐴 × 𝐶)))
187, 17sseldd 3970 1 (((𝐴* 𝐷𝐶 ∈ On) ∧ ∀𝑎𝐴 (𝐵 ∈ 𝒫 On ∧ dom 𝐹𝐶)) → dom 𝐺 ∈ (har‘𝒫 (𝐷 × 𝐶)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 398   = wceq 1537  wcel 2114  wral 3140  Vcvv 3496  wss 3938  𝒫 cpw 4541   ciun 4921   class class class wbr 5068   E cep 5466   × cxp 5555  dom cdm 5557  Oncon0 6193  cfv 6357  cdom 8509  OrdIsocoi 8975  harchar 9022  * cwdom 9023
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2795  ax-rep 5192  ax-sep 5205  ax-nul 5212  ax-pow 5268  ax-pr 5332  ax-un 7463
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2802  df-cleq 2816  df-clel 2895  df-nfc 2965  df-ne 3019  df-ral 3145  df-rex 3146  df-reu 3147  df-rmo 3148  df-rab 3149  df-v 3498  df-sbc 3775  df-csb 3886  df-dif 3941  df-un 3943  df-in 3945  df-ss 3954  df-pss 3956  df-nul 4294  df-if 4470  df-pw 4543  df-sn 4570  df-pr 4572  df-tp 4574  df-op 4576  df-uni 4841  df-iun 4923  df-br 5069  df-opab 5131  df-mpt 5149  df-tr 5175  df-id 5462  df-eprel 5467  df-po 5476  df-so 5477  df-fr 5516  df-se 5517  df-we 5518  df-xp 5563  df-rel 5564  df-cnv 5565  df-co 5566  df-dm 5567  df-rn 5568  df-res 5569  df-ima 5570  df-pred 6150  df-ord 6196  df-on 6197  df-lim 6198  df-suc 6199  df-iota 6316  df-fun 6359  df-fn 6360  df-f 6361  df-f1 6362  df-fo 6363  df-f1o 6364  df-fv 6365  df-isom 6366  df-riota 7116  df-1st 7691  df-2nd 7692  df-wrecs 7949  df-smo 7985  df-recs 8010  df-er 8291  df-en 8512  df-dom 8513  df-sdom 8514  df-oi 8976  df-har 9024  df-wdom 9025
This theorem is referenced by:  hsmexlem4  9853  hsmexlem5  9854
  Copyright terms: Public domain W3C validator