MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  hsmexlem4 Structured version   Visualization version   GIF version

Theorem hsmexlem4 9839
Description: Lemma for hsmex 9842. The core induction, establishing bounds on the order types of iterated unions of the initial set. (Contributed by Stefan O'Rear, 14-Feb-2015.)
Hypotheses
Ref Expression
hsmexlem4.x 𝑋 ∈ V
hsmexlem4.h 𝐻 = (rec((𝑧 ∈ V ↦ (har‘𝒫 (𝑋 × 𝑧))), (har‘𝒫 𝑋)) ↾ ω)
hsmexlem4.u 𝑈 = (𝑥 ∈ V ↦ (rec((𝑦 ∈ V ↦ 𝑦), 𝑥) ↾ ω))
hsmexlem4.s 𝑆 = {𝑎 (𝑅1 “ On) ∣ ∀𝑏 ∈ (TC‘{𝑎})𝑏𝑋}
hsmexlem4.o 𝑂 = OrdIso( E , (rank “ ((𝑈𝑑)‘𝑐)))
Assertion
Ref Expression
hsmexlem4 ((𝑐 ∈ ω ∧ 𝑑𝑆) → dom 𝑂 ∈ (𝐻𝑐))
Distinct variable groups:   𝑎,𝑐,𝑑,𝐻   𝑆,𝑐,𝑑   𝑈,𝑐,𝑑   𝑎,𝑏,𝑧,𝑋   𝑥,𝑎,𝑦   𝑏,𝑐,𝑑,𝑥,𝑦,𝑧
Allowed substitution hints:   𝑆(𝑥,𝑦,𝑧,𝑎,𝑏)   𝑈(𝑥,𝑦,𝑧,𝑎,𝑏)   𝐻(𝑥,𝑦,𝑧,𝑏)   𝑂(𝑥,𝑦,𝑧,𝑎,𝑏,𝑐,𝑑)   𝑋(𝑥,𝑦,𝑐,𝑑)

Proof of Theorem hsmexlem4
Dummy variables 𝑒 𝑓 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 hsmexlem4.o . . . . . . 7 𝑂 = OrdIso( E , (rank “ ((𝑈𝑑)‘𝑐)))
2 fveq2 6663 . . . . . . . . 9 (𝑐 = ∅ → ((𝑈𝑑)‘𝑐) = ((𝑈𝑑)‘∅))
32imaeq2d 5922 . . . . . . . 8 (𝑐 = ∅ → (rank “ ((𝑈𝑑)‘𝑐)) = (rank “ ((𝑈𝑑)‘∅)))
4 oieq2 8965 . . . . . . . 8 ((rank “ ((𝑈𝑑)‘𝑐)) = (rank “ ((𝑈𝑑)‘∅)) → OrdIso( E , (rank “ ((𝑈𝑑)‘𝑐))) = OrdIso( E , (rank “ ((𝑈𝑑)‘∅))))
53, 4syl 17 . . . . . . 7 (𝑐 = ∅ → OrdIso( E , (rank “ ((𝑈𝑑)‘𝑐))) = OrdIso( E , (rank “ ((𝑈𝑑)‘∅))))
61, 5syl5eq 2865 . . . . . 6 (𝑐 = ∅ → 𝑂 = OrdIso( E , (rank “ ((𝑈𝑑)‘∅))))
76dmeqd 5767 . . . . 5 (𝑐 = ∅ → dom 𝑂 = dom OrdIso( E , (rank “ ((𝑈𝑑)‘∅))))
8 fveq2 6663 . . . . 5 (𝑐 = ∅ → (𝐻𝑐) = (𝐻‘∅))
97, 8eleq12d 2904 . . . 4 (𝑐 = ∅ → (dom 𝑂 ∈ (𝐻𝑐) ↔ dom OrdIso( E , (rank “ ((𝑈𝑑)‘∅))) ∈ (𝐻‘∅)))
109ralbidv 3194 . . 3 (𝑐 = ∅ → (∀𝑑𝑆 dom 𝑂 ∈ (𝐻𝑐) ↔ ∀𝑑𝑆 dom OrdIso( E , (rank “ ((𝑈𝑑)‘∅))) ∈ (𝐻‘∅)))
11 fveq2 6663 . . . . . . . . 9 (𝑐 = 𝑒 → ((𝑈𝑑)‘𝑐) = ((𝑈𝑑)‘𝑒))
1211imaeq2d 5922 . . . . . . . 8 (𝑐 = 𝑒 → (rank “ ((𝑈𝑑)‘𝑐)) = (rank “ ((𝑈𝑑)‘𝑒)))
13 oieq2 8965 . . . . . . . 8 ((rank “ ((𝑈𝑑)‘𝑐)) = (rank “ ((𝑈𝑑)‘𝑒)) → OrdIso( E , (rank “ ((𝑈𝑑)‘𝑐))) = OrdIso( E , (rank “ ((𝑈𝑑)‘𝑒))))
1412, 13syl 17 . . . . . . 7 (𝑐 = 𝑒 → OrdIso( E , (rank “ ((𝑈𝑑)‘𝑐))) = OrdIso( E , (rank “ ((𝑈𝑑)‘𝑒))))
151, 14syl5eq 2865 . . . . . 6 (𝑐 = 𝑒𝑂 = OrdIso( E , (rank “ ((𝑈𝑑)‘𝑒))))
1615dmeqd 5767 . . . . 5 (𝑐 = 𝑒 → dom 𝑂 = dom OrdIso( E , (rank “ ((𝑈𝑑)‘𝑒))))
17 fveq2 6663 . . . . 5 (𝑐 = 𝑒 → (𝐻𝑐) = (𝐻𝑒))
1816, 17eleq12d 2904 . . . 4 (𝑐 = 𝑒 → (dom 𝑂 ∈ (𝐻𝑐) ↔ dom OrdIso( E , (rank “ ((𝑈𝑑)‘𝑒))) ∈ (𝐻𝑒)))
1918ralbidv 3194 . . 3 (𝑐 = 𝑒 → (∀𝑑𝑆 dom 𝑂 ∈ (𝐻𝑐) ↔ ∀𝑑𝑆 dom OrdIso( E , (rank “ ((𝑈𝑑)‘𝑒))) ∈ (𝐻𝑒)))
20 fveq2 6663 . . . . . . . . 9 (𝑐 = suc 𝑒 → ((𝑈𝑑)‘𝑐) = ((𝑈𝑑)‘suc 𝑒))
2120imaeq2d 5922 . . . . . . . 8 (𝑐 = suc 𝑒 → (rank “ ((𝑈𝑑)‘𝑐)) = (rank “ ((𝑈𝑑)‘suc 𝑒)))
22 oieq2 8965 . . . . . . . 8 ((rank “ ((𝑈𝑑)‘𝑐)) = (rank “ ((𝑈𝑑)‘suc 𝑒)) → OrdIso( E , (rank “ ((𝑈𝑑)‘𝑐))) = OrdIso( E , (rank “ ((𝑈𝑑)‘suc 𝑒))))
2321, 22syl 17 . . . . . . 7 (𝑐 = suc 𝑒 → OrdIso( E , (rank “ ((𝑈𝑑)‘𝑐))) = OrdIso( E , (rank “ ((𝑈𝑑)‘suc 𝑒))))
241, 23syl5eq 2865 . . . . . 6 (𝑐 = suc 𝑒𝑂 = OrdIso( E , (rank “ ((𝑈𝑑)‘suc 𝑒))))
2524dmeqd 5767 . . . . 5 (𝑐 = suc 𝑒 → dom 𝑂 = dom OrdIso( E , (rank “ ((𝑈𝑑)‘suc 𝑒))))
26 fveq2 6663 . . . . 5 (𝑐 = suc 𝑒 → (𝐻𝑐) = (𝐻‘suc 𝑒))
2725, 26eleq12d 2904 . . . 4 (𝑐 = suc 𝑒 → (dom 𝑂 ∈ (𝐻𝑐) ↔ dom OrdIso( E , (rank “ ((𝑈𝑑)‘suc 𝑒))) ∈ (𝐻‘suc 𝑒)))
2827ralbidv 3194 . . 3 (𝑐 = suc 𝑒 → (∀𝑑𝑆 dom 𝑂 ∈ (𝐻𝑐) ↔ ∀𝑑𝑆 dom OrdIso( E , (rank “ ((𝑈𝑑)‘suc 𝑒))) ∈ (𝐻‘suc 𝑒)))
29 imassrn 5933 . . . . . . 7 (rank “ ((𝑈𝑑)‘∅)) ⊆ ran rank
30 rankf 9211 . . . . . . . 8 rank: (𝑅1 “ On)⟶On
31 frn 6513 . . . . . . . 8 (rank: (𝑅1 “ On)⟶On → ran rank ⊆ On)
3230, 31ax-mp 5 . . . . . . 7 ran rank ⊆ On
3329, 32sstri 3973 . . . . . 6 (rank “ ((𝑈𝑑)‘∅)) ⊆ On
34 hsmexlem4.u . . . . . . . . . 10 𝑈 = (𝑥 ∈ V ↦ (rec((𝑦 ∈ V ↦ 𝑦), 𝑥) ↾ ω))
3534ituni0 9828 . . . . . . . . 9 (𝑑 ∈ V → ((𝑈𝑑)‘∅) = 𝑑)
3635elv 3497 . . . . . . . 8 ((𝑈𝑑)‘∅) = 𝑑
3736imaeq2i 5920 . . . . . . 7 (rank “ ((𝑈𝑑)‘∅)) = (rank “ 𝑑)
38 ffun 6510 . . . . . . . . . 10 (rank: (𝑅1 “ On)⟶On → Fun rank)
3930, 38ax-mp 5 . . . . . . . . 9 Fun rank
40 vex 3495 . . . . . . . . 9 𝑑 ∈ V
41 wdomimag 9039 . . . . . . . . 9 ((Fun rank ∧ 𝑑 ∈ V) → (rank “ 𝑑) ≼* 𝑑)
4239, 40, 41mp2an 688 . . . . . . . 8 (rank “ 𝑑) ≼* 𝑑
43 sneq 4567 . . . . . . . . . . . . 13 (𝑎 = 𝑑 → {𝑎} = {𝑑})
4443fveq2d 6667 . . . . . . . . . . . 12 (𝑎 = 𝑑 → (TC‘{𝑎}) = (TC‘{𝑑}))
4544raleqdv 3413 . . . . . . . . . . 11 (𝑎 = 𝑑 → (∀𝑏 ∈ (TC‘{𝑎})𝑏𝑋 ↔ ∀𝑏 ∈ (TC‘{𝑑})𝑏𝑋))
46 hsmexlem4.s . . . . . . . . . . 11 𝑆 = {𝑎 (𝑅1 “ On) ∣ ∀𝑏 ∈ (TC‘{𝑎})𝑏𝑋}
4745, 46elrab2 3680 . . . . . . . . . 10 (𝑑𝑆 ↔ (𝑑 (𝑅1 “ On) ∧ ∀𝑏 ∈ (TC‘{𝑑})𝑏𝑋))
4847simprbi 497 . . . . . . . . 9 (𝑑𝑆 → ∀𝑏 ∈ (TC‘{𝑑})𝑏𝑋)
49 snex 5322 . . . . . . . . . . . 12 {𝑑} ∈ V
50 tcid 9169 . . . . . . . . . . . 12 ({𝑑} ∈ V → {𝑑} ⊆ (TC‘{𝑑}))
5149, 50ax-mp 5 . . . . . . . . . . 11 {𝑑} ⊆ (TC‘{𝑑})
52 vsnid 4592 . . . . . . . . . . 11 𝑑 ∈ {𝑑}
5351, 52sselii 3961 . . . . . . . . . 10 𝑑 ∈ (TC‘{𝑑})
54 breq1 5060 . . . . . . . . . . 11 (𝑏 = 𝑑 → (𝑏𝑋𝑑𝑋))
5554rspcv 3615 . . . . . . . . . 10 (𝑑 ∈ (TC‘{𝑑}) → (∀𝑏 ∈ (TC‘{𝑑})𝑏𝑋𝑑𝑋))
5653, 55ax-mp 5 . . . . . . . . 9 (∀𝑏 ∈ (TC‘{𝑑})𝑏𝑋𝑑𝑋)
57 domwdom 9026 . . . . . . . . 9 (𝑑𝑋𝑑* 𝑋)
5848, 56, 573syl 18 . . . . . . . 8 (𝑑𝑆𝑑* 𝑋)
59 wdomtr 9027 . . . . . . . 8 (((rank “ 𝑑) ≼* 𝑑𝑑* 𝑋) → (rank “ 𝑑) ≼* 𝑋)
6042, 58, 59sylancr 587 . . . . . . 7 (𝑑𝑆 → (rank “ 𝑑) ≼* 𝑋)
6137, 60eqbrtrid 5092 . . . . . 6 (𝑑𝑆 → (rank “ ((𝑈𝑑)‘∅)) ≼* 𝑋)
62 eqid 2818 . . . . . . 7 OrdIso( E , (rank “ ((𝑈𝑑)‘∅))) = OrdIso( E , (rank “ ((𝑈𝑑)‘∅)))
6362hsmexlem1 9836 . . . . . 6 (((rank “ ((𝑈𝑑)‘∅)) ⊆ On ∧ (rank “ ((𝑈𝑑)‘∅)) ≼* 𝑋) → dom OrdIso( E , (rank “ ((𝑈𝑑)‘∅))) ∈ (har‘𝒫 𝑋))
6433, 61, 63sylancr 587 . . . . 5 (𝑑𝑆 → dom OrdIso( E , (rank “ ((𝑈𝑑)‘∅))) ∈ (har‘𝒫 𝑋))
65 hsmexlem4.h . . . . . 6 𝐻 = (rec((𝑧 ∈ V ↦ (har‘𝒫 (𝑋 × 𝑧))), (har‘𝒫 𝑋)) ↾ ω)
6665hsmexlem7 9833 . . . . 5 (𝐻‘∅) = (har‘𝒫 𝑋)
6764, 66eleqtrrdi 2921 . . . 4 (𝑑𝑆 → dom OrdIso( E , (rank “ ((𝑈𝑑)‘∅))) ∈ (𝐻‘∅))
6867rgen 3145 . . 3 𝑑𝑆 dom OrdIso( E , (rank “ ((𝑈𝑑)‘∅))) ∈ (𝐻‘∅)
69 nfra1 3216 . . . . . 6 𝑑𝑑𝑆 dom OrdIso( E , (rank “ ((𝑈𝑑)‘𝑒))) ∈ (𝐻𝑒)
70 nfv 1906 . . . . . 6 𝑑 𝑒 ∈ ω
7169, 70nfan 1891 . . . . 5 𝑑(∀𝑑𝑆 dom OrdIso( E , (rank “ ((𝑈𝑑)‘𝑒))) ∈ (𝐻𝑒) ∧ 𝑒 ∈ ω)
7234ituniiun 9832 . . . . . . . . . . . . 13 (𝑑 ∈ V → ((𝑈𝑑)‘suc 𝑒) = 𝑓𝑑 ((𝑈𝑓)‘𝑒))
7372elv 3497 . . . . . . . . . . . 12 ((𝑈𝑑)‘suc 𝑒) = 𝑓𝑑 ((𝑈𝑓)‘𝑒)
7473imaeq2i 5920 . . . . . . . . . . 11 (rank “ ((𝑈𝑑)‘suc 𝑒)) = (rank “ 𝑓𝑑 ((𝑈𝑓)‘𝑒))
75 imaiun 6995 . . . . . . . . . . 11 (rank “ 𝑓𝑑 ((𝑈𝑓)‘𝑒)) = 𝑓𝑑 (rank “ ((𝑈𝑓)‘𝑒))
7674, 75eqtri 2841 . . . . . . . . . 10 (rank “ ((𝑈𝑑)‘suc 𝑒)) = 𝑓𝑑 (rank “ ((𝑈𝑓)‘𝑒))
77 oieq2 8965 . . . . . . . . . 10 ((rank “ ((𝑈𝑑)‘suc 𝑒)) = 𝑓𝑑 (rank “ ((𝑈𝑓)‘𝑒)) → OrdIso( E , (rank “ ((𝑈𝑑)‘suc 𝑒))) = OrdIso( E , 𝑓𝑑 (rank “ ((𝑈𝑓)‘𝑒))))
7876, 77ax-mp 5 . . . . . . . . 9 OrdIso( E , (rank “ ((𝑈𝑑)‘suc 𝑒))) = OrdIso( E , 𝑓𝑑 (rank “ ((𝑈𝑓)‘𝑒)))
7978dmeqi 5766 . . . . . . . 8 dom OrdIso( E , (rank “ ((𝑈𝑑)‘suc 𝑒))) = dom OrdIso( E , 𝑓𝑑 (rank “ ((𝑈𝑓)‘𝑒)))
8058ad2antll 725 . . . . . . . . 9 ((∀𝑑𝑆 dom OrdIso( E , (rank “ ((𝑈𝑑)‘𝑒))) ∈ (𝐻𝑒) ∧ (𝑒 ∈ ω ∧ 𝑑𝑆)) → 𝑑* 𝑋)
8165hsmexlem9 9835 . . . . . . . . . 10 (𝑒 ∈ ω → (𝐻𝑒) ∈ On)
8281ad2antrl 724 . . . . . . . . 9 ((∀𝑑𝑆 dom OrdIso( E , (rank “ ((𝑈𝑑)‘𝑒))) ∈ (𝐻𝑒) ∧ (𝑒 ∈ ω ∧ 𝑑𝑆)) → (𝐻𝑒) ∈ On)
83 fveq2 6663 . . . . . . . . . . . . . . . . 17 (𝑑 = 𝑓 → (𝑈𝑑) = (𝑈𝑓))
8483fveq1d 6665 . . . . . . . . . . . . . . . 16 (𝑑 = 𝑓 → ((𝑈𝑑)‘𝑒) = ((𝑈𝑓)‘𝑒))
8584imaeq2d 5922 . . . . . . . . . . . . . . 15 (𝑑 = 𝑓 → (rank “ ((𝑈𝑑)‘𝑒)) = (rank “ ((𝑈𝑓)‘𝑒)))
86 oieq2 8965 . . . . . . . . . . . . . . 15 ((rank “ ((𝑈𝑑)‘𝑒)) = (rank “ ((𝑈𝑓)‘𝑒)) → OrdIso( E , (rank “ ((𝑈𝑑)‘𝑒))) = OrdIso( E , (rank “ ((𝑈𝑓)‘𝑒))))
8785, 86syl 17 . . . . . . . . . . . . . 14 (𝑑 = 𝑓 → OrdIso( E , (rank “ ((𝑈𝑑)‘𝑒))) = OrdIso( E , (rank “ ((𝑈𝑓)‘𝑒))))
8887dmeqd 5767 . . . . . . . . . . . . 13 (𝑑 = 𝑓 → dom OrdIso( E , (rank “ ((𝑈𝑑)‘𝑒))) = dom OrdIso( E , (rank “ ((𝑈𝑓)‘𝑒))))
8988eleq1d 2894 . . . . . . . . . . . 12 (𝑑 = 𝑓 → (dom OrdIso( E , (rank “ ((𝑈𝑑)‘𝑒))) ∈ (𝐻𝑒) ↔ dom OrdIso( E , (rank “ ((𝑈𝑓)‘𝑒))) ∈ (𝐻𝑒)))
90 simpll 763 . . . . . . . . . . . 12 (((∀𝑑𝑆 dom OrdIso( E , (rank “ ((𝑈𝑑)‘𝑒))) ∈ (𝐻𝑒) ∧ (𝑒 ∈ ω ∧ 𝑑𝑆)) ∧ 𝑓𝑑) → ∀𝑑𝑆 dom OrdIso( E , (rank “ ((𝑈𝑑)‘𝑒))) ∈ (𝐻𝑒))
9146ssrab3 4054 . . . . . . . . . . . . . . . . . 18 𝑆 (𝑅1 “ On)
9291sseli 3960 . . . . . . . . . . . . . . . . 17 (𝑑𝑆𝑑 (𝑅1 “ On))
93 r1elssi 9222 . . . . . . . . . . . . . . . . 17 (𝑑 (𝑅1 “ On) → 𝑑 (𝑅1 “ On))
9492, 93syl 17 . . . . . . . . . . . . . . . 16 (𝑑𝑆𝑑 (𝑅1 “ On))
9594sselda 3964 . . . . . . . . . . . . . . 15 ((𝑑𝑆𝑓𝑑) → 𝑓 (𝑅1 “ On))
96 snssi 4733 . . . . . . . . . . . . . . . . . . 19 (𝑓𝑑 → {𝑓} ⊆ 𝑑)
9740tcss 9174 . . . . . . . . . . . . . . . . . . 19 ({𝑓} ⊆ 𝑑 → (TC‘{𝑓}) ⊆ (TC‘𝑑))
9896, 97syl 17 . . . . . . . . . . . . . . . . . 18 (𝑓𝑑 → (TC‘{𝑓}) ⊆ (TC‘𝑑))
9949tcel 9175 . . . . . . . . . . . . . . . . . . 19 (𝑑 ∈ {𝑑} → (TC‘𝑑) ⊆ (TC‘{𝑑}))
10052, 99mp1i 13 . . . . . . . . . . . . . . . . . 18 (𝑓𝑑 → (TC‘𝑑) ⊆ (TC‘{𝑑}))
10198, 100sstrd 3974 . . . . . . . . . . . . . . . . 17 (𝑓𝑑 → (TC‘{𝑓}) ⊆ (TC‘{𝑑}))
102 ssralv 4030 . . . . . . . . . . . . . . . . 17 ((TC‘{𝑓}) ⊆ (TC‘{𝑑}) → (∀𝑏 ∈ (TC‘{𝑑})𝑏𝑋 → ∀𝑏 ∈ (TC‘{𝑓})𝑏𝑋))
103101, 102syl 17 . . . . . . . . . . . . . . . 16 (𝑓𝑑 → (∀𝑏 ∈ (TC‘{𝑑})𝑏𝑋 → ∀𝑏 ∈ (TC‘{𝑓})𝑏𝑋))
10448, 103mpan9 507 . . . . . . . . . . . . . . 15 ((𝑑𝑆𝑓𝑑) → ∀𝑏 ∈ (TC‘{𝑓})𝑏𝑋)
105 sneq 4567 . . . . . . . . . . . . . . . . . 18 (𝑎 = 𝑓 → {𝑎} = {𝑓})
106105fveq2d 6667 . . . . . . . . . . . . . . . . 17 (𝑎 = 𝑓 → (TC‘{𝑎}) = (TC‘{𝑓}))
107106raleqdv 3413 . . . . . . . . . . . . . . . 16 (𝑎 = 𝑓 → (∀𝑏 ∈ (TC‘{𝑎})𝑏𝑋 ↔ ∀𝑏 ∈ (TC‘{𝑓})𝑏𝑋))
108107, 46elrab2 3680 . . . . . . . . . . . . . . 15 (𝑓𝑆 ↔ (𝑓 (𝑅1 “ On) ∧ ∀𝑏 ∈ (TC‘{𝑓})𝑏𝑋))
10995, 104, 108sylanbrc 583 . . . . . . . . . . . . . 14 ((𝑑𝑆𝑓𝑑) → 𝑓𝑆)
110109adantll 710 . . . . . . . . . . . . 13 (((𝑒 ∈ ω ∧ 𝑑𝑆) ∧ 𝑓𝑑) → 𝑓𝑆)
111110adantll 710 . . . . . . . . . . . 12 (((∀𝑑𝑆 dom OrdIso( E , (rank “ ((𝑈𝑑)‘𝑒))) ∈ (𝐻𝑒) ∧ (𝑒 ∈ ω ∧ 𝑑𝑆)) ∧ 𝑓𝑑) → 𝑓𝑆)
11289, 90, 111rspcdva 3622 . . . . . . . . . . 11 (((∀𝑑𝑆 dom OrdIso( E , (rank “ ((𝑈𝑑)‘𝑒))) ∈ (𝐻𝑒) ∧ (𝑒 ∈ ω ∧ 𝑑𝑆)) ∧ 𝑓𝑑) → dom OrdIso( E , (rank “ ((𝑈𝑓)‘𝑒))) ∈ (𝐻𝑒))
113 imassrn 5933 . . . . . . . . . . . . 13 (rank “ ((𝑈𝑓)‘𝑒)) ⊆ ran rank
114113, 32sstri 3973 . . . . . . . . . . . 12 (rank “ ((𝑈𝑓)‘𝑒)) ⊆ On
115 fvex 6676 . . . . . . . . . . . . . . 15 ((𝑈𝑓)‘𝑒) ∈ V
116115funimaex 6434 . . . . . . . . . . . . . 14 (Fun rank → (rank “ ((𝑈𝑓)‘𝑒)) ∈ V)
11739, 116ax-mp 5 . . . . . . . . . . . . 13 (rank “ ((𝑈𝑓)‘𝑒)) ∈ V
118117elpw 4542 . . . . . . . . . . . 12 ((rank “ ((𝑈𝑓)‘𝑒)) ∈ 𝒫 On ↔ (rank “ ((𝑈𝑓)‘𝑒)) ⊆ On)
119114, 118mpbir 232 . . . . . . . . . . 11 (rank “ ((𝑈𝑓)‘𝑒)) ∈ 𝒫 On
120112, 119jctil 520 . . . . . . . . . 10 (((∀𝑑𝑆 dom OrdIso( E , (rank “ ((𝑈𝑑)‘𝑒))) ∈ (𝐻𝑒) ∧ (𝑒 ∈ ω ∧ 𝑑𝑆)) ∧ 𝑓𝑑) → ((rank “ ((𝑈𝑓)‘𝑒)) ∈ 𝒫 On ∧ dom OrdIso( E , (rank “ ((𝑈𝑓)‘𝑒))) ∈ (𝐻𝑒)))
121120ralrimiva 3179 . . . . . . . . 9 ((∀𝑑𝑆 dom OrdIso( E , (rank “ ((𝑈𝑑)‘𝑒))) ∈ (𝐻𝑒) ∧ (𝑒 ∈ ω ∧ 𝑑𝑆)) → ∀𝑓𝑑 ((rank “ ((𝑈𝑓)‘𝑒)) ∈ 𝒫 On ∧ dom OrdIso( E , (rank “ ((𝑈𝑓)‘𝑒))) ∈ (𝐻𝑒)))
122 eqid 2818 . . . . . . . . . 10 OrdIso( E , (rank “ ((𝑈𝑓)‘𝑒))) = OrdIso( E , (rank “ ((𝑈𝑓)‘𝑒)))
123 eqid 2818 . . . . . . . . . 10 OrdIso( E , 𝑓𝑑 (rank “ ((𝑈𝑓)‘𝑒))) = OrdIso( E , 𝑓𝑑 (rank “ ((𝑈𝑓)‘𝑒)))
124122, 123hsmexlem3 9838 . . . . . . . . 9 (((𝑑* 𝑋 ∧ (𝐻𝑒) ∈ On) ∧ ∀𝑓𝑑 ((rank “ ((𝑈𝑓)‘𝑒)) ∈ 𝒫 On ∧ dom OrdIso( E , (rank “ ((𝑈𝑓)‘𝑒))) ∈ (𝐻𝑒))) → dom OrdIso( E , 𝑓𝑑 (rank “ ((𝑈𝑓)‘𝑒))) ∈ (har‘𝒫 (𝑋 × (𝐻𝑒))))
12580, 82, 121, 124syl21anc 833 . . . . . . . 8 ((∀𝑑𝑆 dom OrdIso( E , (rank “ ((𝑈𝑑)‘𝑒))) ∈ (𝐻𝑒) ∧ (𝑒 ∈ ω ∧ 𝑑𝑆)) → dom OrdIso( E , 𝑓𝑑 (rank “ ((𝑈𝑓)‘𝑒))) ∈ (har‘𝒫 (𝑋 × (𝐻𝑒))))
12679, 125eqeltrid 2914 . . . . . . 7 ((∀𝑑𝑆 dom OrdIso( E , (rank “ ((𝑈𝑑)‘𝑒))) ∈ (𝐻𝑒) ∧ (𝑒 ∈ ω ∧ 𝑑𝑆)) → dom OrdIso( E , (rank “ ((𝑈𝑑)‘suc 𝑒))) ∈ (har‘𝒫 (𝑋 × (𝐻𝑒))))
12765hsmexlem8 9834 . . . . . . . 8 (𝑒 ∈ ω → (𝐻‘suc 𝑒) = (har‘𝒫 (𝑋 × (𝐻𝑒))))
128127ad2antrl 724 . . . . . . 7 ((∀𝑑𝑆 dom OrdIso( E , (rank “ ((𝑈𝑑)‘𝑒))) ∈ (𝐻𝑒) ∧ (𝑒 ∈ ω ∧ 𝑑𝑆)) → (𝐻‘suc 𝑒) = (har‘𝒫 (𝑋 × (𝐻𝑒))))
129126, 128eleqtrrd 2913 . . . . . 6 ((∀𝑑𝑆 dom OrdIso( E , (rank “ ((𝑈𝑑)‘𝑒))) ∈ (𝐻𝑒) ∧ (𝑒 ∈ ω ∧ 𝑑𝑆)) → dom OrdIso( E , (rank “ ((𝑈𝑑)‘suc 𝑒))) ∈ (𝐻‘suc 𝑒))
130129expr 457 . . . . 5 ((∀𝑑𝑆 dom OrdIso( E , (rank “ ((𝑈𝑑)‘𝑒))) ∈ (𝐻𝑒) ∧ 𝑒 ∈ ω) → (𝑑𝑆 → dom OrdIso( E , (rank “ ((𝑈𝑑)‘suc 𝑒))) ∈ (𝐻‘suc 𝑒)))
13171, 130ralrimi 3213 . . . 4 ((∀𝑑𝑆 dom OrdIso( E , (rank “ ((𝑈𝑑)‘𝑒))) ∈ (𝐻𝑒) ∧ 𝑒 ∈ ω) → ∀𝑑𝑆 dom OrdIso( E , (rank “ ((𝑈𝑑)‘suc 𝑒))) ∈ (𝐻‘suc 𝑒))
132131expcom 414 . . 3 (𝑒 ∈ ω → (∀𝑑𝑆 dom OrdIso( E , (rank “ ((𝑈𝑑)‘𝑒))) ∈ (𝐻𝑒) → ∀𝑑𝑆 dom OrdIso( E , (rank “ ((𝑈𝑑)‘suc 𝑒))) ∈ (𝐻‘suc 𝑒)))
13310, 19, 28, 68, 132finds1 7600 . 2 (𝑐 ∈ ω → ∀𝑑𝑆 dom 𝑂 ∈ (𝐻𝑐))
134133r19.21bi 3205 1 ((𝑐 ∈ ω ∧ 𝑑𝑆) → dom 𝑂 ∈ (𝐻𝑐))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396   = wceq 1528  wcel 2105  wral 3135  {crab 3139  Vcvv 3492  wss 3933  c0 4288  𝒫 cpw 4535  {csn 4557   cuni 4830   ciun 4910   class class class wbr 5057  cmpt 5137   E cep 5457   × cxp 5546  dom cdm 5548  ran crn 5549  cres 5550  cima 5551  Oncon0 6184  suc csuc 6186  Fun wfun 6342  wf 6344  cfv 6348  ωcom 7569  reccrdg 8034  cdom 8495  OrdIsocoi 8961  harchar 9008  * cwdom 9009  TCctc 9166  𝑅1cr1 9179  rankcrnk 9180
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1787  ax-4 1801  ax-5 1902  ax-6 1961  ax-7 2006  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2151  ax-12 2167  ax-ext 2790  ax-rep 5181  ax-sep 5194  ax-nul 5201  ax-pow 5257  ax-pr 5320  ax-un 7450  ax-inf2 9092
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 842  df-3or 1080  df-3an 1081  df-tru 1531  df-ex 1772  df-nf 1776  df-sb 2061  df-mo 2615  df-eu 2647  df-clab 2797  df-cleq 2811  df-clel 2890  df-nfc 2960  df-ne 3014  df-ral 3140  df-rex 3141  df-reu 3142  df-rmo 3143  df-rab 3144  df-v 3494  df-sbc 3770  df-csb 3881  df-dif 3936  df-un 3938  df-in 3940  df-ss 3949  df-pss 3951  df-nul 4289  df-if 4464  df-pw 4537  df-sn 4558  df-pr 4560  df-tp 4562  df-op 4564  df-uni 4831  df-int 4868  df-iun 4912  df-br 5058  df-opab 5120  df-mpt 5138  df-tr 5164  df-id 5453  df-eprel 5458  df-po 5467  df-so 5468  df-fr 5507  df-se 5508  df-we 5509  df-xp 5554  df-rel 5555  df-cnv 5556  df-co 5557  df-dm 5558  df-rn 5559  df-res 5560  df-ima 5561  df-pred 6141  df-ord 6187  df-on 6188  df-lim 6189  df-suc 6190  df-iota 6307  df-fun 6350  df-fn 6351  df-f 6352  df-f1 6353  df-fo 6354  df-f1o 6355  df-fv 6356  df-isom 6357  df-riota 7103  df-om 7570  df-1st 7678  df-2nd 7679  df-wrecs 7936  df-smo 7972  df-recs 7997  df-rdg 8035  df-er 8278  df-en 8498  df-dom 8499  df-sdom 8500  df-oi 8962  df-har 9010  df-wdom 9011  df-tc 9167  df-r1 9181  df-rank 9182
This theorem is referenced by:  hsmexlem5  9840
  Copyright terms: Public domain W3C validator