Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  hsphoidmvle2 Structured version   Visualization version   GIF version

Theorem hsphoidmvle2 41120
Description: The dimensional volume of a half-open interval intersected with a two half-spaces. Used in the last inequality of step (c) of Lemma 115B of [Fremlin1] p. 29. (Contributed by Glauco Siliprandi, 21-Nov-2020.)
Hypotheses
Ref Expression
hsphoidmvle2.l 𝐿 = (𝑥 ∈ Fin ↦ (𝑎 ∈ (ℝ ↑𝑚 𝑥), 𝑏 ∈ (ℝ ↑𝑚 𝑥) ↦ if(𝑥 = ∅, 0, ∏𝑘𝑥 (vol‘((𝑎𝑘)[,)(𝑏𝑘))))))
hsphoidmvle2.x (𝜑𝑋 ∈ Fin)
hsphoidmvle2.z (𝜑𝑍 ∈ (𝑋𝑌))
hsphoidmvle2.y 𝑋 = (𝑌 ∪ {𝑍})
hsphoidmvle2.c (𝜑𝐶 ∈ ℝ)
hsphoidmvle2.d (𝜑𝐷 ∈ ℝ)
hsphoidmvle2.e (𝜑𝐶𝐷)
hsphoidmvle2.h 𝐻 = (𝑥 ∈ ℝ ↦ (𝑐 ∈ (ℝ ↑𝑚 𝑋) ↦ (𝑗𝑋 ↦ if(𝑗𝑌, (𝑐𝑗), if((𝑐𝑗) ≤ 𝑥, (𝑐𝑗), 𝑥)))))
hsphoidmvle2.a (𝜑𝐴:𝑋⟶ℝ)
hsphoidmvle2.b (𝜑𝐵:𝑋⟶ℝ)
Assertion
Ref Expression
hsphoidmvle2 (𝜑 → (𝐴(𝐿𝑋)((𝐻𝐶)‘𝐵)) ≤ (𝐴(𝐿𝑋)((𝐻𝐷)‘𝐵)))
Distinct variable groups:   𝐴,𝑎,𝑏,𝑘   𝐵,𝑎,𝑏,𝑘   𝐵,𝑐,𝑗,𝑘   𝐶,𝑎,𝑏,𝑘,𝑥   𝐶,𝑐,𝑗,𝑥   𝐷,𝑎,𝑏,𝑘,𝑥   𝐷,𝑐,𝑗   𝐻,𝑎,𝑏,𝑘   𝑋,𝑎,𝑏,𝑘,𝑥   𝑋,𝑐,𝑗   𝑌,𝑐,𝑗,𝑥   𝑍,𝑐,𝑗,𝑘,𝑥   𝜑,𝑎,𝑏,𝑘,𝑥   𝜑,𝑐,𝑗
Allowed substitution hints:   𝐴(𝑥,𝑗,𝑐)   𝐵(𝑥)   𝐻(𝑥,𝑗,𝑐)   𝐿(𝑥,𝑗,𝑘,𝑎,𝑏,𝑐)   𝑌(𝑘,𝑎,𝑏)   𝑍(𝑎,𝑏)

Proof of Theorem hsphoidmvle2
StepHypRef Expression
1 hsphoidmvle2.a . . . . 5 (𝜑𝐴:𝑋⟶ℝ)
2 hsphoidmvle2.z . . . . . 6 (𝜑𝑍 ∈ (𝑋𝑌))
32eldifad 3619 . . . . 5 (𝜑𝑍𝑋)
41, 3ffvelrnd 6400 . . . 4 (𝜑 → (𝐴𝑍) ∈ ℝ)
5 hsphoidmvle2.b . . . . . 6 (𝜑𝐵:𝑋⟶ℝ)
65, 3ffvelrnd 6400 . . . . 5 (𝜑 → (𝐵𝑍) ∈ ℝ)
7 hsphoidmvle2.c . . . . 5 (𝜑𝐶 ∈ ℝ)
86, 7ifcld 4164 . . . 4 (𝜑 → if((𝐵𝑍) ≤ 𝐶, (𝐵𝑍), 𝐶) ∈ ℝ)
9 volicore 41116 . . . 4 (((𝐴𝑍) ∈ ℝ ∧ if((𝐵𝑍) ≤ 𝐶, (𝐵𝑍), 𝐶) ∈ ℝ) → (vol‘((𝐴𝑍)[,)if((𝐵𝑍) ≤ 𝐶, (𝐵𝑍), 𝐶))) ∈ ℝ)
104, 8, 9syl2anc 694 . . 3 (𝜑 → (vol‘((𝐴𝑍)[,)if((𝐵𝑍) ≤ 𝐶, (𝐵𝑍), 𝐶))) ∈ ℝ)
11 hsphoidmvle2.d . . . . 5 (𝜑𝐷 ∈ ℝ)
126, 11ifcld 4164 . . . 4 (𝜑 → if((𝐵𝑍) ≤ 𝐷, (𝐵𝑍), 𝐷) ∈ ℝ)
13 volicore 41116 . . . 4 (((𝐴𝑍) ∈ ℝ ∧ if((𝐵𝑍) ≤ 𝐷, (𝐵𝑍), 𝐷) ∈ ℝ) → (vol‘((𝐴𝑍)[,)if((𝐵𝑍) ≤ 𝐷, (𝐵𝑍), 𝐷))) ∈ ℝ)
144, 12, 13syl2anc 694 . . 3 (𝜑 → (vol‘((𝐴𝑍)[,)if((𝐵𝑍) ≤ 𝐷, (𝐵𝑍), 𝐷))) ∈ ℝ)
15 hsphoidmvle2.x . . . . 5 (𝜑𝑋 ∈ Fin)
16 difssd 3771 . . . . 5 (𝜑 → (𝑋 ∖ {𝑍}) ⊆ 𝑋)
17 ssfi 8221 . . . . 5 ((𝑋 ∈ Fin ∧ (𝑋 ∖ {𝑍}) ⊆ 𝑋) → (𝑋 ∖ {𝑍}) ∈ Fin)
1815, 16, 17syl2anc 694 . . . 4 (𝜑 → (𝑋 ∖ {𝑍}) ∈ Fin)
19 eldifi 3765 . . . . . 6 (𝑘 ∈ (𝑋 ∖ {𝑍}) → 𝑘𝑋)
2019adantl 481 . . . . 5 ((𝜑𝑘 ∈ (𝑋 ∖ {𝑍})) → 𝑘𝑋)
211ffvelrnda 6399 . . . . . 6 ((𝜑𝑘𝑋) → (𝐴𝑘) ∈ ℝ)
225ffvelrnda 6399 . . . . . 6 ((𝜑𝑘𝑋) → (𝐵𝑘) ∈ ℝ)
23 volicore 41116 . . . . . 6 (((𝐴𝑘) ∈ ℝ ∧ (𝐵𝑘) ∈ ℝ) → (vol‘((𝐴𝑘)[,)(𝐵𝑘))) ∈ ℝ)
2421, 22, 23syl2anc 694 . . . . 5 ((𝜑𝑘𝑋) → (vol‘((𝐴𝑘)[,)(𝐵𝑘))) ∈ ℝ)
2520, 24syldan 486 . . . 4 ((𝜑𝑘 ∈ (𝑋 ∖ {𝑍})) → (vol‘((𝐴𝑘)[,)(𝐵𝑘))) ∈ ℝ)
2618, 25fprodrecl 14727 . . 3 (𝜑 → ∏𝑘 ∈ (𝑋 ∖ {𝑍})(vol‘((𝐴𝑘)[,)(𝐵𝑘))) ∈ ℝ)
27 nfv 1883 . . . 4 𝑘𝜑
2820, 21syldan 486 . . . . . 6 ((𝜑𝑘 ∈ (𝑋 ∖ {𝑍})) → (𝐴𝑘) ∈ ℝ)
2920, 22syldan 486 . . . . . . 7 ((𝜑𝑘 ∈ (𝑋 ∖ {𝑍})) → (𝐵𝑘) ∈ ℝ)
3029rexrd 10127 . . . . . 6 ((𝜑𝑘 ∈ (𝑋 ∖ {𝑍})) → (𝐵𝑘) ∈ ℝ*)
31 icombl 23378 . . . . . 6 (((𝐴𝑘) ∈ ℝ ∧ (𝐵𝑘) ∈ ℝ*) → ((𝐴𝑘)[,)(𝐵𝑘)) ∈ dom vol)
3228, 30, 31syl2anc 694 . . . . 5 ((𝜑𝑘 ∈ (𝑋 ∖ {𝑍})) → ((𝐴𝑘)[,)(𝐵𝑘)) ∈ dom vol)
33 volge0 40495 . . . . 5 (((𝐴𝑘)[,)(𝐵𝑘)) ∈ dom vol → 0 ≤ (vol‘((𝐴𝑘)[,)(𝐵𝑘))))
3432, 33syl 17 . . . 4 ((𝜑𝑘 ∈ (𝑋 ∖ {𝑍})) → 0 ≤ (vol‘((𝐴𝑘)[,)(𝐵𝑘))))
3527, 18, 25, 34fprodge0 14768 . . 3 (𝜑 → 0 ≤ ∏𝑘 ∈ (𝑋 ∖ {𝑍})(vol‘((𝐴𝑘)[,)(𝐵𝑘))))
368rexrd 10127 . . . . 5 (𝜑 → if((𝐵𝑍) ≤ 𝐶, (𝐵𝑍), 𝐶) ∈ ℝ*)
37 icombl 23378 . . . . 5 (((𝐴𝑍) ∈ ℝ ∧ if((𝐵𝑍) ≤ 𝐶, (𝐵𝑍), 𝐶) ∈ ℝ*) → ((𝐴𝑍)[,)if((𝐵𝑍) ≤ 𝐶, (𝐵𝑍), 𝐶)) ∈ dom vol)
384, 36, 37syl2anc 694 . . . 4 (𝜑 → ((𝐴𝑍)[,)if((𝐵𝑍) ≤ 𝐶, (𝐵𝑍), 𝐶)) ∈ dom vol)
3912rexrd 10127 . . . . 5 (𝜑 → if((𝐵𝑍) ≤ 𝐷, (𝐵𝑍), 𝐷) ∈ ℝ*)
40 icombl 23378 . . . . 5 (((𝐴𝑍) ∈ ℝ ∧ if((𝐵𝑍) ≤ 𝐷, (𝐵𝑍), 𝐷) ∈ ℝ*) → ((𝐴𝑍)[,)if((𝐵𝑍) ≤ 𝐷, (𝐵𝑍), 𝐷)) ∈ dom vol)
414, 39, 40syl2anc 694 . . . 4 (𝜑 → ((𝐴𝑍)[,)if((𝐵𝑍) ≤ 𝐷, (𝐵𝑍), 𝐷)) ∈ dom vol)
424rexrd 10127 . . . . 5 (𝜑 → (𝐴𝑍) ∈ ℝ*)
434leidd 10632 . . . . 5 (𝜑 → (𝐴𝑍) ≤ (𝐴𝑍))
446leidd 10632 . . . . . . . 8 (𝜑 → (𝐵𝑍) ≤ (𝐵𝑍))
4544adantr 480 . . . . . . 7 ((𝜑 ∧ (𝐵𝑍) ≤ 𝐶) → (𝐵𝑍) ≤ (𝐵𝑍))
46 iftrue 4125 . . . . . . . . 9 ((𝐵𝑍) ≤ 𝐶 → if((𝐵𝑍) ≤ 𝐶, (𝐵𝑍), 𝐶) = (𝐵𝑍))
4746adantl 481 . . . . . . . 8 ((𝜑 ∧ (𝐵𝑍) ≤ 𝐶) → if((𝐵𝑍) ≤ 𝐶, (𝐵𝑍), 𝐶) = (𝐵𝑍))
486adantr 480 . . . . . . . . . 10 ((𝜑 ∧ (𝐵𝑍) ≤ 𝐶) → (𝐵𝑍) ∈ ℝ)
497adantr 480 . . . . . . . . . 10 ((𝜑 ∧ (𝐵𝑍) ≤ 𝐶) → 𝐶 ∈ ℝ)
5011adantr 480 . . . . . . . . . 10 ((𝜑 ∧ (𝐵𝑍) ≤ 𝐶) → 𝐷 ∈ ℝ)
51 simpr 476 . . . . . . . . . 10 ((𝜑 ∧ (𝐵𝑍) ≤ 𝐶) → (𝐵𝑍) ≤ 𝐶)
52 hsphoidmvle2.e . . . . . . . . . . 11 (𝜑𝐶𝐷)
5352adantr 480 . . . . . . . . . 10 ((𝜑 ∧ (𝐵𝑍) ≤ 𝐶) → 𝐶𝐷)
5448, 49, 50, 51, 53letrd 10232 . . . . . . . . 9 ((𝜑 ∧ (𝐵𝑍) ≤ 𝐶) → (𝐵𝑍) ≤ 𝐷)
5554iftrued 4127 . . . . . . . 8 ((𝜑 ∧ (𝐵𝑍) ≤ 𝐶) → if((𝐵𝑍) ≤ 𝐷, (𝐵𝑍), 𝐷) = (𝐵𝑍))
5647, 55breq12d 4698 . . . . . . 7 ((𝜑 ∧ (𝐵𝑍) ≤ 𝐶) → (if((𝐵𝑍) ≤ 𝐶, (𝐵𝑍), 𝐶) ≤ if((𝐵𝑍) ≤ 𝐷, (𝐵𝑍), 𝐷) ↔ (𝐵𝑍) ≤ (𝐵𝑍)))
5745, 56mpbird 247 . . . . . 6 ((𝜑 ∧ (𝐵𝑍) ≤ 𝐶) → if((𝐵𝑍) ≤ 𝐶, (𝐵𝑍), 𝐶) ≤ if((𝐵𝑍) ≤ 𝐷, (𝐵𝑍), 𝐷))
58 simpl 472 . . . . . . . 8 ((𝜑 ∧ ¬ (𝐵𝑍) ≤ 𝐶) → 𝜑)
59 simpr 476 . . . . . . . . 9 ((𝜑 ∧ ¬ (𝐵𝑍) ≤ 𝐶) → ¬ (𝐵𝑍) ≤ 𝐶)
6058, 7syl 17 . . . . . . . . . 10 ((𝜑 ∧ ¬ (𝐵𝑍) ≤ 𝐶) → 𝐶 ∈ ℝ)
6158, 6syl 17 . . . . . . . . . 10 ((𝜑 ∧ ¬ (𝐵𝑍) ≤ 𝐶) → (𝐵𝑍) ∈ ℝ)
6260, 61ltnled 10222 . . . . . . . . 9 ((𝜑 ∧ ¬ (𝐵𝑍) ≤ 𝐶) → (𝐶 < (𝐵𝑍) ↔ ¬ (𝐵𝑍) ≤ 𝐶))
6359, 62mpbird 247 . . . . . . . 8 ((𝜑 ∧ ¬ (𝐵𝑍) ≤ 𝐶) → 𝐶 < (𝐵𝑍))
647adantr 480 . . . . . . . . . . . 12 ((𝜑𝐶 < (𝐵𝑍)) → 𝐶 ∈ ℝ)
656adantr 480 . . . . . . . . . . . 12 ((𝜑𝐶 < (𝐵𝑍)) → (𝐵𝑍) ∈ ℝ)
66 simpr 476 . . . . . . . . . . . 12 ((𝜑𝐶 < (𝐵𝑍)) → 𝐶 < (𝐵𝑍))
6764, 65, 66ltled 10223 . . . . . . . . . . 11 ((𝜑𝐶 < (𝐵𝑍)) → 𝐶 ≤ (𝐵𝑍))
6867adantr 480 . . . . . . . . . 10 (((𝜑𝐶 < (𝐵𝑍)) ∧ (𝐵𝑍) ≤ 𝐷) → 𝐶 ≤ (𝐵𝑍))
69 iftrue 4125 . . . . . . . . . . . 12 ((𝐵𝑍) ≤ 𝐷 → if((𝐵𝑍) ≤ 𝐷, (𝐵𝑍), 𝐷) = (𝐵𝑍))
7069eqcomd 2657 . . . . . . . . . . 11 ((𝐵𝑍) ≤ 𝐷 → (𝐵𝑍) = if((𝐵𝑍) ≤ 𝐷, (𝐵𝑍), 𝐷))
7170adantl 481 . . . . . . . . . 10 (((𝜑𝐶 < (𝐵𝑍)) ∧ (𝐵𝑍) ≤ 𝐷) → (𝐵𝑍) = if((𝐵𝑍) ≤ 𝐷, (𝐵𝑍), 𝐷))
7268, 71breqtrd 4711 . . . . . . . . 9 (((𝜑𝐶 < (𝐵𝑍)) ∧ (𝐵𝑍) ≤ 𝐷) → 𝐶 ≤ if((𝐵𝑍) ≤ 𝐷, (𝐵𝑍), 𝐷))
7352ad2antrr 762 . . . . . . . . . 10 (((𝜑𝐶 < (𝐵𝑍)) ∧ ¬ (𝐵𝑍) ≤ 𝐷) → 𝐶𝐷)
74 iffalse 4128 . . . . . . . . . . . 12 (¬ (𝐵𝑍) ≤ 𝐷 → if((𝐵𝑍) ≤ 𝐷, (𝐵𝑍), 𝐷) = 𝐷)
7574eqcomd 2657 . . . . . . . . . . 11 (¬ (𝐵𝑍) ≤ 𝐷𝐷 = if((𝐵𝑍) ≤ 𝐷, (𝐵𝑍), 𝐷))
7675adantl 481 . . . . . . . . . 10 (((𝜑𝐶 < (𝐵𝑍)) ∧ ¬ (𝐵𝑍) ≤ 𝐷) → 𝐷 = if((𝐵𝑍) ≤ 𝐷, (𝐵𝑍), 𝐷))
7773, 76breqtrd 4711 . . . . . . . . 9 (((𝜑𝐶 < (𝐵𝑍)) ∧ ¬ (𝐵𝑍) ≤ 𝐷) → 𝐶 ≤ if((𝐵𝑍) ≤ 𝐷, (𝐵𝑍), 𝐷))
7872, 77pm2.61dan 849 . . . . . . . 8 ((𝜑𝐶 < (𝐵𝑍)) → 𝐶 ≤ if((𝐵𝑍) ≤ 𝐷, (𝐵𝑍), 𝐷))
7958, 63, 78syl2anc 694 . . . . . . 7 ((𝜑 ∧ ¬ (𝐵𝑍) ≤ 𝐶) → 𝐶 ≤ if((𝐵𝑍) ≤ 𝐷, (𝐵𝑍), 𝐷))
80 iffalse 4128 . . . . . . . . 9 (¬ (𝐵𝑍) ≤ 𝐶 → if((𝐵𝑍) ≤ 𝐶, (𝐵𝑍), 𝐶) = 𝐶)
8180adantl 481 . . . . . . . 8 ((𝜑 ∧ ¬ (𝐵𝑍) ≤ 𝐶) → if((𝐵𝑍) ≤ 𝐶, (𝐵𝑍), 𝐶) = 𝐶)
8281breq1d 4695 . . . . . . 7 ((𝜑 ∧ ¬ (𝐵𝑍) ≤ 𝐶) → (if((𝐵𝑍) ≤ 𝐶, (𝐵𝑍), 𝐶) ≤ if((𝐵𝑍) ≤ 𝐷, (𝐵𝑍), 𝐷) ↔ 𝐶 ≤ if((𝐵𝑍) ≤ 𝐷, (𝐵𝑍), 𝐷)))
8379, 82mpbird 247 . . . . . 6 ((𝜑 ∧ ¬ (𝐵𝑍) ≤ 𝐶) → if((𝐵𝑍) ≤ 𝐶, (𝐵𝑍), 𝐶) ≤ if((𝐵𝑍) ≤ 𝐷, (𝐵𝑍), 𝐷))
8457, 83pm2.61dan 849 . . . . 5 (𝜑 → if((𝐵𝑍) ≤ 𝐶, (𝐵𝑍), 𝐶) ≤ if((𝐵𝑍) ≤ 𝐷, (𝐵𝑍), 𝐷))
85 icossico 12281 . . . . 5 ((((𝐴𝑍) ∈ ℝ* ∧ if((𝐵𝑍) ≤ 𝐷, (𝐵𝑍), 𝐷) ∈ ℝ*) ∧ ((𝐴𝑍) ≤ (𝐴𝑍) ∧ if((𝐵𝑍) ≤ 𝐶, (𝐵𝑍), 𝐶) ≤ if((𝐵𝑍) ≤ 𝐷, (𝐵𝑍), 𝐷))) → ((𝐴𝑍)[,)if((𝐵𝑍) ≤ 𝐶, (𝐵𝑍), 𝐶)) ⊆ ((𝐴𝑍)[,)if((𝐵𝑍) ≤ 𝐷, (𝐵𝑍), 𝐷)))
8642, 39, 43, 84, 85syl22anc 1367 . . . 4 (𝜑 → ((𝐴𝑍)[,)if((𝐵𝑍) ≤ 𝐶, (𝐵𝑍), 𝐶)) ⊆ ((𝐴𝑍)[,)if((𝐵𝑍) ≤ 𝐷, (𝐵𝑍), 𝐷)))
87 volss 23347 . . . 4 ((((𝐴𝑍)[,)if((𝐵𝑍) ≤ 𝐶, (𝐵𝑍), 𝐶)) ∈ dom vol ∧ ((𝐴𝑍)[,)if((𝐵𝑍) ≤ 𝐷, (𝐵𝑍), 𝐷)) ∈ dom vol ∧ ((𝐴𝑍)[,)if((𝐵𝑍) ≤ 𝐶, (𝐵𝑍), 𝐶)) ⊆ ((𝐴𝑍)[,)if((𝐵𝑍) ≤ 𝐷, (𝐵𝑍), 𝐷))) → (vol‘((𝐴𝑍)[,)if((𝐵𝑍) ≤ 𝐶, (𝐵𝑍), 𝐶))) ≤ (vol‘((𝐴𝑍)[,)if((𝐵𝑍) ≤ 𝐷, (𝐵𝑍), 𝐷))))
8838, 41, 86, 87syl3anc 1366 . . 3 (𝜑 → (vol‘((𝐴𝑍)[,)if((𝐵𝑍) ≤ 𝐶, (𝐵𝑍), 𝐶))) ≤ (vol‘((𝐴𝑍)[,)if((𝐵𝑍) ≤ 𝐷, (𝐵𝑍), 𝐷))))
8910, 14, 26, 35, 88lemul1ad 11001 . 2 (𝜑 → ((vol‘((𝐴𝑍)[,)if((𝐵𝑍) ≤ 𝐶, (𝐵𝑍), 𝐶))) · ∏𝑘 ∈ (𝑋 ∖ {𝑍})(vol‘((𝐴𝑘)[,)(𝐵𝑘)))) ≤ ((vol‘((𝐴𝑍)[,)if((𝐵𝑍) ≤ 𝐷, (𝐵𝑍), 𝐷))) · ∏𝑘 ∈ (𝑋 ∖ {𝑍})(vol‘((𝐴𝑘)[,)(𝐵𝑘)))))
90 hsphoidmvle2.l . . . . 5 𝐿 = (𝑥 ∈ Fin ↦ (𝑎 ∈ (ℝ ↑𝑚 𝑥), 𝑏 ∈ (ℝ ↑𝑚 𝑥) ↦ if(𝑥 = ∅, 0, ∏𝑘𝑥 (vol‘((𝑎𝑘)[,)(𝑏𝑘))))))
91 ne0i 3954 . . . . . 6 (𝑍𝑋𝑋 ≠ ∅)
923, 91syl 17 . . . . 5 (𝜑𝑋 ≠ ∅)
93 hsphoidmvle2.h . . . . . 6 𝐻 = (𝑥 ∈ ℝ ↦ (𝑐 ∈ (ℝ ↑𝑚 𝑋) ↦ (𝑗𝑋 ↦ if(𝑗𝑌, (𝑐𝑗), if((𝑐𝑗) ≤ 𝑥, (𝑐𝑗), 𝑥)))))
9493, 7, 15, 5hsphoif 41111 . . . . 5 (𝜑 → ((𝐻𝐶)‘𝐵):𝑋⟶ℝ)
9590, 15, 92, 1, 94hoidmvn0val 41119 . . . 4 (𝜑 → (𝐴(𝐿𝑋)((𝐻𝐶)‘𝐵)) = ∏𝑘𝑋 (vol‘((𝐴𝑘)[,)(((𝐻𝐶)‘𝐵)‘𝑘))))
9694ffvelrnda 6399 . . . . . . 7 ((𝜑𝑘𝑋) → (((𝐻𝐶)‘𝐵)‘𝑘) ∈ ℝ)
97 volicore 41116 . . . . . . 7 (((𝐴𝑘) ∈ ℝ ∧ (((𝐻𝐶)‘𝐵)‘𝑘) ∈ ℝ) → (vol‘((𝐴𝑘)[,)(((𝐻𝐶)‘𝐵)‘𝑘))) ∈ ℝ)
9821, 96, 97syl2anc 694 . . . . . 6 ((𝜑𝑘𝑋) → (vol‘((𝐴𝑘)[,)(((𝐻𝐶)‘𝐵)‘𝑘))) ∈ ℝ)
9998recnd 10106 . . . . 5 ((𝜑𝑘𝑋) → (vol‘((𝐴𝑘)[,)(((𝐻𝐶)‘𝐵)‘𝑘))) ∈ ℂ)
100 fveq2 6229 . . . . . . . . 9 (𝑘 = 𝑍 → (𝐴𝑘) = (𝐴𝑍))
101 fveq2 6229 . . . . . . . . 9 (𝑘 = 𝑍 → (((𝐻𝐶)‘𝐵)‘𝑘) = (((𝐻𝐶)‘𝐵)‘𝑍))
102100, 101oveq12d 6708 . . . . . . . 8 (𝑘 = 𝑍 → ((𝐴𝑘)[,)(((𝐻𝐶)‘𝐵)‘𝑘)) = ((𝐴𝑍)[,)(((𝐻𝐶)‘𝐵)‘𝑍)))
103102fveq2d 6233 . . . . . . 7 (𝑘 = 𝑍 → (vol‘((𝐴𝑘)[,)(((𝐻𝐶)‘𝐵)‘𝑘))) = (vol‘((𝐴𝑍)[,)(((𝐻𝐶)‘𝐵)‘𝑍))))
104103adantl 481 . . . . . 6 ((𝜑𝑘 = 𝑍) → (vol‘((𝐴𝑘)[,)(((𝐻𝐶)‘𝐵)‘𝑘))) = (vol‘((𝐴𝑍)[,)(((𝐻𝐶)‘𝐵)‘𝑍))))
10593, 7, 15, 5, 3hsphoival 41114 . . . . . . . . . 10 (𝜑 → (((𝐻𝐶)‘𝐵)‘𝑍) = if(𝑍𝑌, (𝐵𝑍), if((𝐵𝑍) ≤ 𝐶, (𝐵𝑍), 𝐶)))
1062eldifbd 3620 . . . . . . . . . . 11 (𝜑 → ¬ 𝑍𝑌)
107106iffalsed 4130 . . . . . . . . . 10 (𝜑 → if(𝑍𝑌, (𝐵𝑍), if((𝐵𝑍) ≤ 𝐶, (𝐵𝑍), 𝐶)) = if((𝐵𝑍) ≤ 𝐶, (𝐵𝑍), 𝐶))
108105, 107eqtrd 2685 . . . . . . . . 9 (𝜑 → (((𝐻𝐶)‘𝐵)‘𝑍) = if((𝐵𝑍) ≤ 𝐶, (𝐵𝑍), 𝐶))
109108oveq2d 6706 . . . . . . . 8 (𝜑 → ((𝐴𝑍)[,)(((𝐻𝐶)‘𝐵)‘𝑍)) = ((𝐴𝑍)[,)if((𝐵𝑍) ≤ 𝐶, (𝐵𝑍), 𝐶)))
110109fveq2d 6233 . . . . . . 7 (𝜑 → (vol‘((𝐴𝑍)[,)(((𝐻𝐶)‘𝐵)‘𝑍))) = (vol‘((𝐴𝑍)[,)if((𝐵𝑍) ≤ 𝐶, (𝐵𝑍), 𝐶))))
111110adantr 480 . . . . . 6 ((𝜑𝑘 = 𝑍) → (vol‘((𝐴𝑍)[,)(((𝐻𝐶)‘𝐵)‘𝑍))) = (vol‘((𝐴𝑍)[,)if((𝐵𝑍) ≤ 𝐶, (𝐵𝑍), 𝐶))))
112104, 111eqtrd 2685 . . . . 5 ((𝜑𝑘 = 𝑍) → (vol‘((𝐴𝑘)[,)(((𝐻𝐶)‘𝐵)‘𝑘))) = (vol‘((𝐴𝑍)[,)if((𝐵𝑍) ≤ 𝐶, (𝐵𝑍), 𝐶))))
11315, 99, 3, 112fprodsplit1 40143 . . . 4 (𝜑 → ∏𝑘𝑋 (vol‘((𝐴𝑘)[,)(((𝐻𝐶)‘𝐵)‘𝑘))) = ((vol‘((𝐴𝑍)[,)if((𝐵𝑍) ≤ 𝐶, (𝐵𝑍), 𝐶))) · ∏𝑘 ∈ (𝑋 ∖ {𝑍})(vol‘((𝐴𝑘)[,)(((𝐻𝐶)‘𝐵)‘𝑘)))))
1147adantr 480 . . . . . . . . . 10 ((𝜑𝑘 ∈ (𝑋 ∖ {𝑍})) → 𝐶 ∈ ℝ)
11515adantr 480 . . . . . . . . . 10 ((𝜑𝑘 ∈ (𝑋 ∖ {𝑍})) → 𝑋 ∈ Fin)
1165adantr 480 . . . . . . . . . 10 ((𝜑𝑘 ∈ (𝑋 ∖ {𝑍})) → 𝐵:𝑋⟶ℝ)
11793, 114, 115, 116, 20hsphoival 41114 . . . . . . . . 9 ((𝜑𝑘 ∈ (𝑋 ∖ {𝑍})) → (((𝐻𝐶)‘𝐵)‘𝑘) = if(𝑘𝑌, (𝐵𝑘), if((𝐵𝑘) ≤ 𝐶, (𝐵𝑘), 𝐶)))
118 hsphoidmvle2.y . . . . . . . . . . . . 13 𝑋 = (𝑌 ∪ {𝑍})
11919, 118syl6eleq 2740 . . . . . . . . . . . 12 (𝑘 ∈ (𝑋 ∖ {𝑍}) → 𝑘 ∈ (𝑌 ∪ {𝑍}))
120 eldifn 3766 . . . . . . . . . . . 12 (𝑘 ∈ (𝑋 ∖ {𝑍}) → ¬ 𝑘 ∈ {𝑍})
121 elunnel2 39512 . . . . . . . . . . . 12 ((𝑘 ∈ (𝑌 ∪ {𝑍}) ∧ ¬ 𝑘 ∈ {𝑍}) → 𝑘𝑌)
122119, 120, 121syl2anc 694 . . . . . . . . . . 11 (𝑘 ∈ (𝑋 ∖ {𝑍}) → 𝑘𝑌)
123122adantl 481 . . . . . . . . . 10 ((𝜑𝑘 ∈ (𝑋 ∖ {𝑍})) → 𝑘𝑌)
124123iftrued 4127 . . . . . . . . 9 ((𝜑𝑘 ∈ (𝑋 ∖ {𝑍})) → if(𝑘𝑌, (𝐵𝑘), if((𝐵𝑘) ≤ 𝐶, (𝐵𝑘), 𝐶)) = (𝐵𝑘))
125117, 124eqtrd 2685 . . . . . . . 8 ((𝜑𝑘 ∈ (𝑋 ∖ {𝑍})) → (((𝐻𝐶)‘𝐵)‘𝑘) = (𝐵𝑘))
126125oveq2d 6706 . . . . . . 7 ((𝜑𝑘 ∈ (𝑋 ∖ {𝑍})) → ((𝐴𝑘)[,)(((𝐻𝐶)‘𝐵)‘𝑘)) = ((𝐴𝑘)[,)(𝐵𝑘)))
127126fveq2d 6233 . . . . . 6 ((𝜑𝑘 ∈ (𝑋 ∖ {𝑍})) → (vol‘((𝐴𝑘)[,)(((𝐻𝐶)‘𝐵)‘𝑘))) = (vol‘((𝐴𝑘)[,)(𝐵𝑘))))
128127prodeq2dv 14697 . . . . 5 (𝜑 → ∏𝑘 ∈ (𝑋 ∖ {𝑍})(vol‘((𝐴𝑘)[,)(((𝐻𝐶)‘𝐵)‘𝑘))) = ∏𝑘 ∈ (𝑋 ∖ {𝑍})(vol‘((𝐴𝑘)[,)(𝐵𝑘))))
129128oveq2d 6706 . . . 4 (𝜑 → ((vol‘((𝐴𝑍)[,)if((𝐵𝑍) ≤ 𝐶, (𝐵𝑍), 𝐶))) · ∏𝑘 ∈ (𝑋 ∖ {𝑍})(vol‘((𝐴𝑘)[,)(((𝐻𝐶)‘𝐵)‘𝑘)))) = ((vol‘((𝐴𝑍)[,)if((𝐵𝑍) ≤ 𝐶, (𝐵𝑍), 𝐶))) · ∏𝑘 ∈ (𝑋 ∖ {𝑍})(vol‘((𝐴𝑘)[,)(𝐵𝑘)))))
13095, 113, 1293eqtrd 2689 . . 3 (𝜑 → (𝐴(𝐿𝑋)((𝐻𝐶)‘𝐵)) = ((vol‘((𝐴𝑍)[,)if((𝐵𝑍) ≤ 𝐶, (𝐵𝑍), 𝐶))) · ∏𝑘 ∈ (𝑋 ∖ {𝑍})(vol‘((𝐴𝑘)[,)(𝐵𝑘)))))
13193, 11, 15, 5hsphoif 41111 . . . . 5 (𝜑 → ((𝐻𝐷)‘𝐵):𝑋⟶ℝ)
13290, 15, 92, 1, 131hoidmvn0val 41119 . . . 4 (𝜑 → (𝐴(𝐿𝑋)((𝐻𝐷)‘𝐵)) = ∏𝑘𝑋 (vol‘((𝐴𝑘)[,)(((𝐻𝐷)‘𝐵)‘𝑘))))
133131ffvelrnda 6399 . . . . . . 7 ((𝜑𝑘𝑋) → (((𝐻𝐷)‘𝐵)‘𝑘) ∈ ℝ)
134 volicore 41116 . . . . . . 7 (((𝐴𝑘) ∈ ℝ ∧ (((𝐻𝐷)‘𝐵)‘𝑘) ∈ ℝ) → (vol‘((𝐴𝑘)[,)(((𝐻𝐷)‘𝐵)‘𝑘))) ∈ ℝ)
13521, 133, 134syl2anc 694 . . . . . 6 ((𝜑𝑘𝑋) → (vol‘((𝐴𝑘)[,)(((𝐻𝐷)‘𝐵)‘𝑘))) ∈ ℝ)
136135recnd 10106 . . . . 5 ((𝜑𝑘𝑋) → (vol‘((𝐴𝑘)[,)(((𝐻𝐷)‘𝐵)‘𝑘))) ∈ ℂ)
137 fveq2 6229 . . . . . . . 8 (𝑘 = 𝑍 → (((𝐻𝐷)‘𝐵)‘𝑘) = (((𝐻𝐷)‘𝐵)‘𝑍))
138100, 137oveq12d 6708 . . . . . . 7 (𝑘 = 𝑍 → ((𝐴𝑘)[,)(((𝐻𝐷)‘𝐵)‘𝑘)) = ((𝐴𝑍)[,)(((𝐻𝐷)‘𝐵)‘𝑍)))
139138fveq2d 6233 . . . . . 6 (𝑘 = 𝑍 → (vol‘((𝐴𝑘)[,)(((𝐻𝐷)‘𝐵)‘𝑘))) = (vol‘((𝐴𝑍)[,)(((𝐻𝐷)‘𝐵)‘𝑍))))
140139adantl 481 . . . . 5 ((𝜑𝑘 = 𝑍) → (vol‘((𝐴𝑘)[,)(((𝐻𝐷)‘𝐵)‘𝑘))) = (vol‘((𝐴𝑍)[,)(((𝐻𝐷)‘𝐵)‘𝑍))))
14115, 136, 3, 140fprodsplit1 40143 . . . 4 (𝜑 → ∏𝑘𝑋 (vol‘((𝐴𝑘)[,)(((𝐻𝐷)‘𝐵)‘𝑘))) = ((vol‘((𝐴𝑍)[,)(((𝐻𝐷)‘𝐵)‘𝑍))) · ∏𝑘 ∈ (𝑋 ∖ {𝑍})(vol‘((𝐴𝑘)[,)(((𝐻𝐷)‘𝐵)‘𝑘)))))
14293, 11, 15, 5, 3hsphoival 41114 . . . . . . . 8 (𝜑 → (((𝐻𝐷)‘𝐵)‘𝑍) = if(𝑍𝑌, (𝐵𝑍), if((𝐵𝑍) ≤ 𝐷, (𝐵𝑍), 𝐷)))
143106iffalsed 4130 . . . . . . . 8 (𝜑 → if(𝑍𝑌, (𝐵𝑍), if((𝐵𝑍) ≤ 𝐷, (𝐵𝑍), 𝐷)) = if((𝐵𝑍) ≤ 𝐷, (𝐵𝑍), 𝐷))
144142, 143eqtrd 2685 . . . . . . 7 (𝜑 → (((𝐻𝐷)‘𝐵)‘𝑍) = if((𝐵𝑍) ≤ 𝐷, (𝐵𝑍), 𝐷))
145144oveq2d 6706 . . . . . 6 (𝜑 → ((𝐴𝑍)[,)(((𝐻𝐷)‘𝐵)‘𝑍)) = ((𝐴𝑍)[,)if((𝐵𝑍) ≤ 𝐷, (𝐵𝑍), 𝐷)))
146145fveq2d 6233 . . . . 5 (𝜑 → (vol‘((𝐴𝑍)[,)(((𝐻𝐷)‘𝐵)‘𝑍))) = (vol‘((𝐴𝑍)[,)if((𝐵𝑍) ≤ 𝐷, (𝐵𝑍), 𝐷))))
14711adantr 480 . . . . . . . . . 10 ((𝜑𝑘 ∈ (𝑋 ∖ {𝑍})) → 𝐷 ∈ ℝ)
14893, 147, 115, 116, 20hsphoival 41114 . . . . . . . . 9 ((𝜑𝑘 ∈ (𝑋 ∖ {𝑍})) → (((𝐻𝐷)‘𝐵)‘𝑘) = if(𝑘𝑌, (𝐵𝑘), if((𝐵𝑘) ≤ 𝐷, (𝐵𝑘), 𝐷)))
149123iftrued 4127 . . . . . . . . 9 ((𝜑𝑘 ∈ (𝑋 ∖ {𝑍})) → if(𝑘𝑌, (𝐵𝑘), if((𝐵𝑘) ≤ 𝐷, (𝐵𝑘), 𝐷)) = (𝐵𝑘))
150148, 149eqtrd 2685 . . . . . . . 8 ((𝜑𝑘 ∈ (𝑋 ∖ {𝑍})) → (((𝐻𝐷)‘𝐵)‘𝑘) = (𝐵𝑘))
151150oveq2d 6706 . . . . . . 7 ((𝜑𝑘 ∈ (𝑋 ∖ {𝑍})) → ((𝐴𝑘)[,)(((𝐻𝐷)‘𝐵)‘𝑘)) = ((𝐴𝑘)[,)(𝐵𝑘)))
152151fveq2d 6233 . . . . . 6 ((𝜑𝑘 ∈ (𝑋 ∖ {𝑍})) → (vol‘((𝐴𝑘)[,)(((𝐻𝐷)‘𝐵)‘𝑘))) = (vol‘((𝐴𝑘)[,)(𝐵𝑘))))
153152prodeq2dv 14697 . . . . 5 (𝜑 → ∏𝑘 ∈ (𝑋 ∖ {𝑍})(vol‘((𝐴𝑘)[,)(((𝐻𝐷)‘𝐵)‘𝑘))) = ∏𝑘 ∈ (𝑋 ∖ {𝑍})(vol‘((𝐴𝑘)[,)(𝐵𝑘))))
154146, 153oveq12d 6708 . . . 4 (𝜑 → ((vol‘((𝐴𝑍)[,)(((𝐻𝐷)‘𝐵)‘𝑍))) · ∏𝑘 ∈ (𝑋 ∖ {𝑍})(vol‘((𝐴𝑘)[,)(((𝐻𝐷)‘𝐵)‘𝑘)))) = ((vol‘((𝐴𝑍)[,)if((𝐵𝑍) ≤ 𝐷, (𝐵𝑍), 𝐷))) · ∏𝑘 ∈ (𝑋 ∖ {𝑍})(vol‘((𝐴𝑘)[,)(𝐵𝑘)))))
155132, 141, 1543eqtrd 2689 . . 3 (𝜑 → (𝐴(𝐿𝑋)((𝐻𝐷)‘𝐵)) = ((vol‘((𝐴𝑍)[,)if((𝐵𝑍) ≤ 𝐷, (𝐵𝑍), 𝐷))) · ∏𝑘 ∈ (𝑋 ∖ {𝑍})(vol‘((𝐴𝑘)[,)(𝐵𝑘)))))
156130, 155breq12d 4698 . 2 (𝜑 → ((𝐴(𝐿𝑋)((𝐻𝐶)‘𝐵)) ≤ (𝐴(𝐿𝑋)((𝐻𝐷)‘𝐵)) ↔ ((vol‘((𝐴𝑍)[,)if((𝐵𝑍) ≤ 𝐶, (𝐵𝑍), 𝐶))) · ∏𝑘 ∈ (𝑋 ∖ {𝑍})(vol‘((𝐴𝑘)[,)(𝐵𝑘)))) ≤ ((vol‘((𝐴𝑍)[,)if((𝐵𝑍) ≤ 𝐷, (𝐵𝑍), 𝐷))) · ∏𝑘 ∈ (𝑋 ∖ {𝑍})(vol‘((𝐴𝑘)[,)(𝐵𝑘))))))
15789, 156mpbird 247 1 (𝜑 → (𝐴(𝐿𝑋)((𝐻𝐶)‘𝐵)) ≤ (𝐴(𝐿𝑋)((𝐻𝐷)‘𝐵)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 383   = wceq 1523  wcel 2030  wne 2823  cdif 3604  cun 3605  wss 3607  c0 3948  ifcif 4119  {csn 4210   class class class wbr 4685  cmpt 4762  dom cdm 5143  wf 5922  cfv 5926  (class class class)co 6690  cmpt2 6692  𝑚 cmap 7899  Fincfn 7997  cr 9973  0cc0 9974   · cmul 9979  *cxr 10111   < clt 10112  cle 10113  [,)cico 12215  cprod 14679  volcvol 23278
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1762  ax-4 1777  ax-5 1879  ax-6 1945  ax-7 1981  ax-8 2032  ax-9 2039  ax-10 2059  ax-11 2074  ax-12 2087  ax-13 2282  ax-ext 2631  ax-rep 4804  ax-sep 4814  ax-nul 4822  ax-pow 4873  ax-pr 4936  ax-un 6991  ax-inf2 8576  ax-cnex 10030  ax-resscn 10031  ax-1cn 10032  ax-icn 10033  ax-addcl 10034  ax-addrcl 10035  ax-mulcl 10036  ax-mulrcl 10037  ax-mulcom 10038  ax-addass 10039  ax-mulass 10040  ax-distr 10041  ax-i2m1 10042  ax-1ne0 10043  ax-1rid 10044  ax-rnegex 10045  ax-rrecex 10046  ax-cnre 10047  ax-pre-lttri 10048  ax-pre-lttrn 10049  ax-pre-ltadd 10050  ax-pre-mulgt0 10051  ax-pre-sup 10052
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1055  df-3an 1056  df-tru 1526  df-fal 1529  df-ex 1745  df-nf 1750  df-sb 1938  df-eu 2502  df-mo 2503  df-clab 2638  df-cleq 2644  df-clel 2647  df-nfc 2782  df-ne 2824  df-nel 2927  df-ral 2946  df-rex 2947  df-reu 2948  df-rmo 2949  df-rab 2950  df-v 3233  df-sbc 3469  df-csb 3567  df-dif 3610  df-un 3612  df-in 3614  df-ss 3621  df-pss 3623  df-nul 3949  df-if 4120  df-pw 4193  df-sn 4211  df-pr 4213  df-tp 4215  df-op 4217  df-uni 4469  df-int 4508  df-iun 4554  df-br 4686  df-opab 4746  df-mpt 4763  df-tr 4786  df-id 5053  df-eprel 5058  df-po 5064  df-so 5065  df-fr 5102  df-se 5103  df-we 5104  df-xp 5149  df-rel 5150  df-cnv 5151  df-co 5152  df-dm 5153  df-rn 5154  df-res 5155  df-ima 5156  df-pred 5718  df-ord 5764  df-on 5765  df-lim 5766  df-suc 5767  df-iota 5889  df-fun 5928  df-fn 5929  df-f 5930  df-f1 5931  df-fo 5932  df-f1o 5933  df-fv 5934  df-isom 5935  df-riota 6651  df-ov 6693  df-oprab 6694  df-mpt2 6695  df-of 6939  df-om 7108  df-1st 7210  df-2nd 7211  df-wrecs 7452  df-recs 7513  df-rdg 7551  df-1o 7605  df-2o 7606  df-oadd 7609  df-er 7787  df-map 7901  df-pm 7902  df-en 7998  df-dom 7999  df-sdom 8000  df-fin 8001  df-fi 8358  df-sup 8389  df-inf 8390  df-oi 8456  df-card 8803  df-cda 9028  df-pnf 10114  df-mnf 10115  df-xr 10116  df-ltxr 10117  df-le 10118  df-sub 10306  df-neg 10307  df-div 10723  df-nn 11059  df-2 11117  df-3 11118  df-n0 11331  df-z 11416  df-uz 11726  df-q 11827  df-rp 11871  df-xneg 11984  df-xadd 11985  df-xmul 11986  df-ioo 12217  df-ico 12219  df-icc 12220  df-fz 12365  df-fzo 12505  df-fl 12633  df-seq 12842  df-exp 12901  df-hash 13158  df-cj 13883  df-re 13884  df-im 13885  df-sqrt 14019  df-abs 14020  df-clim 14263  df-rlim 14264  df-sum 14461  df-prod 14680  df-rest 16130  df-topgen 16151  df-psmet 19786  df-xmet 19787  df-met 19788  df-bl 19789  df-mopn 19790  df-top 20747  df-topon 20764  df-bases 20798  df-cmp 21238  df-ovol 23279  df-vol 23280
This theorem is referenced by:  hoidmvlelem1  41130  hoidmvlelem2  41131
  Copyright terms: Public domain W3C validator