Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  hspmbl Structured version   Visualization version   GIF version

Theorem hspmbl 42904
Description: Any half-space of the n-dimensional Real numbers is Lebesgue measurable. Lemma 115F of [Fremlin1] p. 31. (Contributed by Glauco Siliprandi, 24-Dec-2020.)
Hypotheses
Ref Expression
hspmbl.1 𝐻 = (𝑥 ∈ Fin ↦ (𝑙𝑥, 𝑦 ∈ ℝ ↦ X𝑘𝑥 if(𝑘 = 𝑙, (-∞(,)𝑦), ℝ)))
hspmbl.x (𝜑𝑋 ∈ Fin)
hspmbl.i (𝜑𝐾𝑋)
hspmbl.y (𝜑𝑌 ∈ ℝ)
Assertion
Ref Expression
hspmbl (𝜑 → (𝐾(𝐻𝑋)𝑌) ∈ dom (voln‘𝑋))
Distinct variable groups:   𝐾,𝑙,𝑥,𝑦   𝑋,𝑙,𝑥,𝑦   𝑌,𝑙,𝑥,𝑦   𝜑,𝑙   𝑘,𝑙,𝑥,𝑦   𝜑,𝑥,𝑦
Allowed substitution hints:   𝜑(𝑘)   𝐻(𝑥,𝑦,𝑘,𝑙)   𝐾(𝑘)   𝑋(𝑘)   𝑌(𝑘)

Proof of Theorem hspmbl
Dummy variables 𝑎 𝑗 𝑝 𝑡 𝑏 𝑐 𝑟 𝑠 𝑖 𝑚 𝑛 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 hspmbl.x . . . 4 (𝜑𝑋 ∈ Fin)
21ovnome 42848 . . 3 (𝜑 → (voln*‘𝑋) ∈ OutMeas)
3 eqid 2821 . . 3 dom (voln*‘𝑋) = dom (voln*‘𝑋)
4 eqid 2821 . . 3 (CaraGen‘(voln*‘𝑋)) = (CaraGen‘(voln*‘𝑋))
5 ovex 7183 . . . . . . . . 9 (-∞(,)𝑌) ∈ V
6 reex 10622 . . . . . . . . 9 ℝ ∈ V
75, 6ifex 4515 . . . . . . . 8 if(𝑝 = 𝐾, (-∞(,)𝑌), ℝ) ∈ V
87ixpssmap 8490 . . . . . . 7 X𝑝𝑋 if(𝑝 = 𝐾, (-∞(,)𝑌), ℝ) ⊆ ( 𝑝𝑋 if(𝑝 = 𝐾, (-∞(,)𝑌), ℝ) ↑m 𝑋)
9 iftrue 4473 . . . . . . . . . . . 12 (𝑝 = 𝐾 → if(𝑝 = 𝐾, (-∞(,)𝑌), ℝ) = (-∞(,)𝑌))
10 ioossre 12792 . . . . . . . . . . . . 13 (-∞(,)𝑌) ⊆ ℝ
1110a1i 11 . . . . . . . . . . . 12 (𝑝 = 𝐾 → (-∞(,)𝑌) ⊆ ℝ)
129, 11eqsstrd 4005 . . . . . . . . . . 11 (𝑝 = 𝐾 → if(𝑝 = 𝐾, (-∞(,)𝑌), ℝ) ⊆ ℝ)
13 iffalse 4476 . . . . . . . . . . . 12 𝑝 = 𝐾 → if(𝑝 = 𝐾, (-∞(,)𝑌), ℝ) = ℝ)
14 ssid 3989 . . . . . . . . . . . . 13 ℝ ⊆ ℝ
1514a1i 11 . . . . . . . . . . . 12 𝑝 = 𝐾 → ℝ ⊆ ℝ)
1613, 15eqsstrd 4005 . . . . . . . . . . 11 𝑝 = 𝐾 → if(𝑝 = 𝐾, (-∞(,)𝑌), ℝ) ⊆ ℝ)
1712, 16pm2.61i 184 . . . . . . . . . 10 if(𝑝 = 𝐾, (-∞(,)𝑌), ℝ) ⊆ ℝ
1817rgenw 3150 . . . . . . . . 9 𝑝𝑋 if(𝑝 = 𝐾, (-∞(,)𝑌), ℝ) ⊆ ℝ
19 iunss 4962 . . . . . . . . 9 ( 𝑝𝑋 if(𝑝 = 𝐾, (-∞(,)𝑌), ℝ) ⊆ ℝ ↔ ∀𝑝𝑋 if(𝑝 = 𝐾, (-∞(,)𝑌), ℝ) ⊆ ℝ)
2018, 19mpbir 233 . . . . . . . 8 𝑝𝑋 if(𝑝 = 𝐾, (-∞(,)𝑌), ℝ) ⊆ ℝ
21 mapss 8447 . . . . . . . 8 ((ℝ ∈ V ∧ 𝑝𝑋 if(𝑝 = 𝐾, (-∞(,)𝑌), ℝ) ⊆ ℝ) → ( 𝑝𝑋 if(𝑝 = 𝐾, (-∞(,)𝑌), ℝ) ↑m 𝑋) ⊆ (ℝ ↑m 𝑋))
226, 20, 21mp2an 690 . . . . . . 7 ( 𝑝𝑋 if(𝑝 = 𝐾, (-∞(,)𝑌), ℝ) ↑m 𝑋) ⊆ (ℝ ↑m 𝑋)
238, 22sstri 3976 . . . . . 6 X𝑝𝑋 if(𝑝 = 𝐾, (-∞(,)𝑌), ℝ) ⊆ (ℝ ↑m 𝑋)
247rgenw 3150 . . . . . . . 8 𝑝𝑋 if(𝑝 = 𝐾, (-∞(,)𝑌), ℝ) ∈ V
25 ixpexg 8480 . . . . . . . 8 (∀𝑝𝑋 if(𝑝 = 𝐾, (-∞(,)𝑌), ℝ) ∈ V → X𝑝𝑋 if(𝑝 = 𝐾, (-∞(,)𝑌), ℝ) ∈ V)
2624, 25ax-mp 5 . . . . . . 7 X𝑝𝑋 if(𝑝 = 𝐾, (-∞(,)𝑌), ℝ) ∈ V
27 elpwg 4545 . . . . . . 7 (X𝑝𝑋 if(𝑝 = 𝐾, (-∞(,)𝑌), ℝ) ∈ V → (X𝑝𝑋 if(𝑝 = 𝐾, (-∞(,)𝑌), ℝ) ∈ 𝒫 (ℝ ↑m 𝑋) ↔ X𝑝𝑋 if(𝑝 = 𝐾, (-∞(,)𝑌), ℝ) ⊆ (ℝ ↑m 𝑋)))
2826, 27ax-mp 5 . . . . . 6 (X𝑝𝑋 if(𝑝 = 𝐾, (-∞(,)𝑌), ℝ) ∈ 𝒫 (ℝ ↑m 𝑋) ↔ X𝑝𝑋 if(𝑝 = 𝐾, (-∞(,)𝑌), ℝ) ⊆ (ℝ ↑m 𝑋))
2923, 28mpbir 233 . . . . 5 X𝑝𝑋 if(𝑝 = 𝐾, (-∞(,)𝑌), ℝ) ∈ 𝒫 (ℝ ↑m 𝑋)
3029a1i 11 . . . 4 (𝜑X𝑝𝑋 if(𝑝 = 𝐾, (-∞(,)𝑌), ℝ) ∈ 𝒫 (ℝ ↑m 𝑋))
31 hspmbl.1 . . . . . . 7 𝐻 = (𝑥 ∈ Fin ↦ (𝑙𝑥, 𝑦 ∈ ℝ ↦ X𝑘𝑥 if(𝑘 = 𝑙, (-∞(,)𝑦), ℝ)))
32 equid 2015 . . . . . . . . 9 𝑥 = 𝑥
33 eqid 2821 . . . . . . . . 9 ℝ = ℝ
34 equequ1 2028 . . . . . . . . . . 11 (𝑘 = 𝑝 → (𝑘 = 𝑙𝑝 = 𝑙))
3534ifbid 4489 . . . . . . . . . 10 (𝑘 = 𝑝 → if(𝑘 = 𝑙, (-∞(,)𝑦), ℝ) = if(𝑝 = 𝑙, (-∞(,)𝑦), ℝ))
3635cbvixpv 8473 . . . . . . . . 9 X𝑘𝑥 if(𝑘 = 𝑙, (-∞(,)𝑦), ℝ) = X𝑝𝑥 if(𝑝 = 𝑙, (-∞(,)𝑦), ℝ)
3732, 33, 36mpoeq123i 7224 . . . . . . . 8 (𝑙𝑥, 𝑦 ∈ ℝ ↦ X𝑘𝑥 if(𝑘 = 𝑙, (-∞(,)𝑦), ℝ)) = (𝑙𝑥, 𝑦 ∈ ℝ ↦ X𝑝𝑥 if(𝑝 = 𝑙, (-∞(,)𝑦), ℝ))
3837mpteq2i 5151 . . . . . . 7 (𝑥 ∈ Fin ↦ (𝑙𝑥, 𝑦 ∈ ℝ ↦ X𝑘𝑥 if(𝑘 = 𝑙, (-∞(,)𝑦), ℝ))) = (𝑥 ∈ Fin ↦ (𝑙𝑥, 𝑦 ∈ ℝ ↦ X𝑝𝑥 if(𝑝 = 𝑙, (-∞(,)𝑦), ℝ)))
3931, 38eqtri 2844 . . . . . 6 𝐻 = (𝑥 ∈ Fin ↦ (𝑙𝑥, 𝑦 ∈ ℝ ↦ X𝑝𝑥 if(𝑝 = 𝑙, (-∞(,)𝑦), ℝ)))
40 hspmbl.i . . . . . 6 (𝜑𝐾𝑋)
41 hspmbl.y . . . . . 6 (𝜑𝑌 ∈ ℝ)
4239, 1, 40, 41hspval 42884 . . . . 5 (𝜑 → (𝐾(𝐻𝑋)𝑌) = X𝑝𝑋 if(𝑝 = 𝐾, (-∞(,)𝑌), ℝ))
431ovnf 42838 . . . . . . . . 9 (𝜑 → (voln*‘𝑋):𝒫 (ℝ ↑m 𝑋)⟶(0[,]+∞))
4443fdmd 6518 . . . . . . . 8 (𝜑 → dom (voln*‘𝑋) = 𝒫 (ℝ ↑m 𝑋))
4544unieqd 4842 . . . . . . 7 (𝜑 dom (voln*‘𝑋) = 𝒫 (ℝ ↑m 𝑋))
46 unipw 5335 . . . . . . . 8 𝒫 (ℝ ↑m 𝑋) = (ℝ ↑m 𝑋)
4746a1i 11 . . . . . . 7 (𝜑 𝒫 (ℝ ↑m 𝑋) = (ℝ ↑m 𝑋))
4845, 47eqtrd 2856 . . . . . 6 (𝜑 dom (voln*‘𝑋) = (ℝ ↑m 𝑋))
4948pweqd 4544 . . . . 5 (𝜑 → 𝒫 dom (voln*‘𝑋) = 𝒫 (ℝ ↑m 𝑋))
5042, 49eleq12d 2907 . . . 4 (𝜑 → ((𝐾(𝐻𝑋)𝑌) ∈ 𝒫 dom (voln*‘𝑋) ↔ X𝑝𝑋 if(𝑝 = 𝐾, (-∞(,)𝑌), ℝ) ∈ 𝒫 (ℝ ↑m 𝑋)))
5130, 50mpbird 259 . . 3 (𝜑 → (𝐾(𝐻𝑋)𝑌) ∈ 𝒫 dom (voln*‘𝑋))
52 simpl 485 . . . 4 ((𝜑𝑎 ∈ 𝒫 dom (voln*‘𝑋)) → 𝜑)
53 simpr 487 . . . . 5 ((𝜑𝑎 ∈ 𝒫 dom (voln*‘𝑋)) → 𝑎 ∈ 𝒫 dom (voln*‘𝑋))
5452, 49syl 17 . . . . 5 ((𝜑𝑎 ∈ 𝒫 dom (voln*‘𝑋)) → 𝒫 dom (voln*‘𝑋) = 𝒫 (ℝ ↑m 𝑋))
5553, 54eleqtrd 2915 . . . 4 ((𝜑𝑎 ∈ 𝒫 dom (voln*‘𝑋)) → 𝑎 ∈ 𝒫 (ℝ ↑m 𝑋))
561adantr 483 . . . . . . . . . 10 ((𝜑𝑎 ∈ 𝒫 (ℝ ↑m 𝑋)) → 𝑋 ∈ Fin)
57 inss1 4205 . . . . . . . . . . . . 13 (𝑎 ∩ (𝐾(𝐻𝑋)𝑌)) ⊆ 𝑎
5857a1i 11 . . . . . . . . . . . 12 (𝑎 ∈ 𝒫 (ℝ ↑m 𝑋) → (𝑎 ∩ (𝐾(𝐻𝑋)𝑌)) ⊆ 𝑎)
59 elpwi 4551 . . . . . . . . . . . 12 (𝑎 ∈ 𝒫 (ℝ ↑m 𝑋) → 𝑎 ⊆ (ℝ ↑m 𝑋))
6058, 59sstrd 3977 . . . . . . . . . . 11 (𝑎 ∈ 𝒫 (ℝ ↑m 𝑋) → (𝑎 ∩ (𝐾(𝐻𝑋)𝑌)) ⊆ (ℝ ↑m 𝑋))
6160adantl 484 . . . . . . . . . 10 ((𝜑𝑎 ∈ 𝒫 (ℝ ↑m 𝑋)) → (𝑎 ∩ (𝐾(𝐻𝑋)𝑌)) ⊆ (ℝ ↑m 𝑋))
6256, 61ovnxrcl 42844 . . . . . . . . 9 ((𝜑𝑎 ∈ 𝒫 (ℝ ↑m 𝑋)) → ((voln*‘𝑋)‘(𝑎 ∩ (𝐾(𝐻𝑋)𝑌))) ∈ ℝ*)
6359adantl 484 . . . . . . . . . . 11 ((𝜑𝑎 ∈ 𝒫 (ℝ ↑m 𝑋)) → 𝑎 ⊆ (ℝ ↑m 𝑋))
6463ssdifssd 4119 . . . . . . . . . 10 ((𝜑𝑎 ∈ 𝒫 (ℝ ↑m 𝑋)) → (𝑎 ∖ (𝐾(𝐻𝑋)𝑌)) ⊆ (ℝ ↑m 𝑋))
6556, 64ovnxrcl 42844 . . . . . . . . 9 ((𝜑𝑎 ∈ 𝒫 (ℝ ↑m 𝑋)) → ((voln*‘𝑋)‘(𝑎 ∖ (𝐾(𝐻𝑋)𝑌))) ∈ ℝ*)
6662, 65xaddcld 12688 . . . . . . . 8 ((𝜑𝑎 ∈ 𝒫 (ℝ ↑m 𝑋)) → (((voln*‘𝑋)‘(𝑎 ∩ (𝐾(𝐻𝑋)𝑌))) +𝑒 ((voln*‘𝑋)‘(𝑎 ∖ (𝐾(𝐻𝑋)𝑌)))) ∈ ℝ*)
67 pnfge 12519 . . . . . . . 8 ((((voln*‘𝑋)‘(𝑎 ∩ (𝐾(𝐻𝑋)𝑌))) +𝑒 ((voln*‘𝑋)‘(𝑎 ∖ (𝐾(𝐻𝑋)𝑌)))) ∈ ℝ* → (((voln*‘𝑋)‘(𝑎 ∩ (𝐾(𝐻𝑋)𝑌))) +𝑒 ((voln*‘𝑋)‘(𝑎 ∖ (𝐾(𝐻𝑋)𝑌)))) ≤ +∞)
6866, 67syl 17 . . . . . . 7 ((𝜑𝑎 ∈ 𝒫 (ℝ ↑m 𝑋)) → (((voln*‘𝑋)‘(𝑎 ∩ (𝐾(𝐻𝑋)𝑌))) +𝑒 ((voln*‘𝑋)‘(𝑎 ∖ (𝐾(𝐻𝑋)𝑌)))) ≤ +∞)
6968adantr 483 . . . . . 6 (((𝜑𝑎 ∈ 𝒫 (ℝ ↑m 𝑋)) ∧ ((voln*‘𝑋)‘𝑎) = +∞) → (((voln*‘𝑋)‘(𝑎 ∩ (𝐾(𝐻𝑋)𝑌))) +𝑒 ((voln*‘𝑋)‘(𝑎 ∖ (𝐾(𝐻𝑋)𝑌)))) ≤ +∞)
70 id 22 . . . . . . . 8 (((voln*‘𝑋)‘𝑎) = +∞ → ((voln*‘𝑋)‘𝑎) = +∞)
7170eqcomd 2827 . . . . . . 7 (((voln*‘𝑋)‘𝑎) = +∞ → +∞ = ((voln*‘𝑋)‘𝑎))
7271adantl 484 . . . . . 6 (((𝜑𝑎 ∈ 𝒫 (ℝ ↑m 𝑋)) ∧ ((voln*‘𝑋)‘𝑎) = +∞) → +∞ = ((voln*‘𝑋)‘𝑎))
7369, 72breqtrd 5085 . . . . 5 (((𝜑𝑎 ∈ 𝒫 (ℝ ↑m 𝑋)) ∧ ((voln*‘𝑋)‘𝑎) = +∞) → (((voln*‘𝑋)‘(𝑎 ∩ (𝐾(𝐻𝑋)𝑌))) +𝑒 ((voln*‘𝑋)‘(𝑎 ∖ (𝐾(𝐻𝑋)𝑌)))) ≤ ((voln*‘𝑋)‘𝑎))
74 simpl 485 . . . . . 6 (((𝜑𝑎 ∈ 𝒫 (ℝ ↑m 𝑋)) ∧ ¬ ((voln*‘𝑋)‘𝑎) = +∞) → (𝜑𝑎 ∈ 𝒫 (ℝ ↑m 𝑋)))
7556, 63ovncl 42842 . . . . . . . 8 ((𝜑𝑎 ∈ 𝒫 (ℝ ↑m 𝑋)) → ((voln*‘𝑋)‘𝑎) ∈ (0[,]+∞))
7675adantr 483 . . . . . . 7 (((𝜑𝑎 ∈ 𝒫 (ℝ ↑m 𝑋)) ∧ ¬ ((voln*‘𝑋)‘𝑎) = +∞) → ((voln*‘𝑋)‘𝑎) ∈ (0[,]+∞))
77 neqne 3024 . . . . . . . 8 (¬ ((voln*‘𝑋)‘𝑎) = +∞ → ((voln*‘𝑋)‘𝑎) ≠ +∞)
7877adantl 484 . . . . . . 7 (((𝜑𝑎 ∈ 𝒫 (ℝ ↑m 𝑋)) ∧ ¬ ((voln*‘𝑋)‘𝑎) = +∞) → ((voln*‘𝑋)‘𝑎) ≠ +∞)
79 ge0xrre 41799 . . . . . . 7 ((((voln*‘𝑋)‘𝑎) ∈ (0[,]+∞) ∧ ((voln*‘𝑋)‘𝑎) ≠ +∞) → ((voln*‘𝑋)‘𝑎) ∈ ℝ)
8076, 78, 79syl2anc 586 . . . . . 6 (((𝜑𝑎 ∈ 𝒫 (ℝ ↑m 𝑋)) ∧ ¬ ((voln*‘𝑋)‘𝑎) = +∞) → ((voln*‘𝑋)‘𝑎) ∈ ℝ)
8156adantr 483 . . . . . . 7 (((𝜑𝑎 ∈ 𝒫 (ℝ ↑m 𝑋)) ∧ ((voln*‘𝑋)‘𝑎) ∈ ℝ) → 𝑋 ∈ Fin)
8240ad2antrr 724 . . . . . . 7 (((𝜑𝑎 ∈ 𝒫 (ℝ ↑m 𝑋)) ∧ ((voln*‘𝑋)‘𝑎) ∈ ℝ) → 𝐾𝑋)
8341ad2antrr 724 . . . . . . 7 (((𝜑𝑎 ∈ 𝒫 (ℝ ↑m 𝑋)) ∧ ((voln*‘𝑋)‘𝑎) ∈ ℝ) → 𝑌 ∈ ℝ)
84 simpr 487 . . . . . . 7 (((𝜑𝑎 ∈ 𝒫 (ℝ ↑m 𝑋)) ∧ ((voln*‘𝑋)‘𝑎) ∈ ℝ) → ((voln*‘𝑋)‘𝑎) ∈ ℝ)
8563adantr 483 . . . . . . 7 (((𝜑𝑎 ∈ 𝒫 (ℝ ↑m 𝑋)) ∧ ((voln*‘𝑋)‘𝑎) ∈ ℝ) → 𝑎 ⊆ (ℝ ↑m 𝑋))
86 sseq1 3992 . . . . . . . . 9 (𝑎 = 𝑏 → (𝑎 𝑗 ∈ ℕ X𝑝𝑋 (([,) ∘ (𝑙𝑗))‘𝑝) ↔ 𝑏 𝑗 ∈ ℕ X𝑝𝑋 (([,) ∘ (𝑙𝑗))‘𝑝)))
8786rabbidv 3481 . . . . . . . 8 (𝑎 = 𝑏 → {𝑙 ∈ (((ℝ × ℝ) ↑m 𝑋) ↑m ℕ) ∣ 𝑎 𝑗 ∈ ℕ X𝑝𝑋 (([,) ∘ (𝑙𝑗))‘𝑝)} = {𝑙 ∈ (((ℝ × ℝ) ↑m 𝑋) ↑m ℕ) ∣ 𝑏 𝑗 ∈ ℕ X𝑝𝑋 (([,) ∘ (𝑙𝑗))‘𝑝)})
8887cbvmptv 5162 . . . . . . 7 (𝑎 ∈ 𝒫 (ℝ ↑m 𝑋) ↦ {𝑙 ∈ (((ℝ × ℝ) ↑m 𝑋) ↑m ℕ) ∣ 𝑎 𝑗 ∈ ℕ X𝑝𝑋 (([,) ∘ (𝑙𝑗))‘𝑝)}) = (𝑏 ∈ 𝒫 (ℝ ↑m 𝑋) ↦ {𝑙 ∈ (((ℝ × ℝ) ↑m 𝑋) ↑m ℕ) ∣ 𝑏 𝑗 ∈ ℕ X𝑝𝑋 (([,) ∘ (𝑙𝑗))‘𝑝)})
89 simpl 485 . . . . . . . . . . . 12 ((𝑖 = 𝑝𝑋) → 𝑖 = )
9089coeq2d 5728 . . . . . . . . . . 11 ((𝑖 = 𝑝𝑋) → ([,) ∘ 𝑖) = ([,) ∘ ))
9190fveq1d 6667 . . . . . . . . . 10 ((𝑖 = 𝑝𝑋) → (([,) ∘ 𝑖)‘𝑝) = (([,) ∘ )‘𝑝))
9291fveq2d 6669 . . . . . . . . 9 ((𝑖 = 𝑝𝑋) → (vol‘(([,) ∘ 𝑖)‘𝑝)) = (vol‘(([,) ∘ )‘𝑝)))
9392prodeq2dv 15271 . . . . . . . 8 (𝑖 = → ∏𝑝𝑋 (vol‘(([,) ∘ 𝑖)‘𝑝)) = ∏𝑝𝑋 (vol‘(([,) ∘ )‘𝑝)))
9493cbvmptv 5162 . . . . . . 7 (𝑖 ∈ ((ℝ × ℝ) ↑m 𝑋) ↦ ∏𝑝𝑋 (vol‘(([,) ∘ 𝑖)‘𝑝))) = ( ∈ ((ℝ × ℝ) ↑m 𝑋) ↦ ∏𝑝𝑋 (vol‘(([,) ∘ )‘𝑝)))
95 fveq2 6665 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑛 = 𝑝 → (([,) ∘ (𝑚𝑖))‘𝑛) = (([,) ∘ (𝑚𝑖))‘𝑝))
9695cbvixpv 8473 . . . . . . . . . . . . . . . . . . . . . . 23 X𝑛𝑋 (([,) ∘ (𝑚𝑖))‘𝑛) = X𝑝𝑋 (([,) ∘ (𝑚𝑖))‘𝑝)
9796a1i 11 . . . . . . . . . . . . . . . . . . . . . 22 (𝑚 = X𝑛𝑋 (([,) ∘ (𝑚𝑖))‘𝑛) = X𝑝𝑋 (([,) ∘ (𝑚𝑖))‘𝑝))
98 fveq1 6664 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑚 = → (𝑚𝑖) = (𝑖))
9998coeq2d 5728 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑚 = → ([,) ∘ (𝑚𝑖)) = ([,) ∘ (𝑖)))
10099fveq1d 6667 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑚 = → (([,) ∘ (𝑚𝑖))‘𝑝) = (([,) ∘ (𝑖))‘𝑝))
101100ixpeq2dv 8471 . . . . . . . . . . . . . . . . . . . . . 22 (𝑚 = X𝑝𝑋 (([,) ∘ (𝑚𝑖))‘𝑝) = X𝑝𝑋 (([,) ∘ (𝑖))‘𝑝))
10297, 101eqtrd 2856 . . . . . . . . . . . . . . . . . . . . 21 (𝑚 = X𝑛𝑋 (([,) ∘ (𝑚𝑖))‘𝑛) = X𝑝𝑋 (([,) ∘ (𝑖))‘𝑝))
103102adantr 483 . . . . . . . . . . . . . . . . . . . 20 ((𝑚 = 𝑖 ∈ ℕ) → X𝑛𝑋 (([,) ∘ (𝑚𝑖))‘𝑛) = X𝑝𝑋 (([,) ∘ (𝑖))‘𝑝))
104103iuneq2dv 4936 . . . . . . . . . . . . . . . . . . 19 (𝑚 = 𝑖 ∈ ℕ X𝑛𝑋 (([,) ∘ (𝑚𝑖))‘𝑛) = 𝑖 ∈ ℕ X𝑝𝑋 (([,) ∘ (𝑖))‘𝑝))
105104sseq2d 3999 . . . . . . . . . . . . . . . . . 18 (𝑚 = → (𝑎 𝑖 ∈ ℕ X𝑛𝑋 (([,) ∘ (𝑚𝑖))‘𝑛) ↔ 𝑎 𝑖 ∈ ℕ X𝑝𝑋 (([,) ∘ (𝑖))‘𝑝)))
106105cbvrabv 3492 . . . . . . . . . . . . . . . . 17 {𝑚 ∈ (((ℝ × ℝ) ↑m 𝑋) ↑m ℕ) ∣ 𝑎 𝑖 ∈ ℕ X𝑛𝑋 (([,) ∘ (𝑚𝑖))‘𝑛)} = { ∈ (((ℝ × ℝ) ↑m 𝑋) ↑m ℕ) ∣ 𝑎 𝑖 ∈ ℕ X𝑝𝑋 (([,) ∘ (𝑖))‘𝑝)}
107 fveq1 6664 . . . . . . . . . . . . . . . . . . . . . . . . 25 ( = 𝑙 → (𝑖) = (𝑙𝑖))
108107coeq2d 5728 . . . . . . . . . . . . . . . . . . . . . . . 24 ( = 𝑙 → ([,) ∘ (𝑖)) = ([,) ∘ (𝑙𝑖)))
109108fveq1d 6667 . . . . . . . . . . . . . . . . . . . . . . 23 ( = 𝑙 → (([,) ∘ (𝑖))‘𝑝) = (([,) ∘ (𝑙𝑖))‘𝑝))
110109ixpeq2dv 8471 . . . . . . . . . . . . . . . . . . . . . 22 ( = 𝑙X𝑝𝑋 (([,) ∘ (𝑖))‘𝑝) = X𝑝𝑋 (([,) ∘ (𝑙𝑖))‘𝑝))
111110adantr 483 . . . . . . . . . . . . . . . . . . . . 21 (( = 𝑙𝑖 ∈ ℕ) → X𝑝𝑋 (([,) ∘ (𝑖))‘𝑝) = X𝑝𝑋 (([,) ∘ (𝑙𝑖))‘𝑝))
112111iuneq2dv 4936 . . . . . . . . . . . . . . . . . . . 20 ( = 𝑙 𝑖 ∈ ℕ X𝑝𝑋 (([,) ∘ (𝑖))‘𝑝) = 𝑖 ∈ ℕ X𝑝𝑋 (([,) ∘ (𝑙𝑖))‘𝑝))
113 fveq2 6665 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑖 = 𝑗 → (𝑙𝑖) = (𝑙𝑗))
114113coeq2d 5728 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑖 = 𝑗 → ([,) ∘ (𝑙𝑖)) = ([,) ∘ (𝑙𝑗)))
115114fveq1d 6667 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑖 = 𝑗 → (([,) ∘ (𝑙𝑖))‘𝑝) = (([,) ∘ (𝑙𝑗))‘𝑝))
116115ixpeq2dv 8471 . . . . . . . . . . . . . . . . . . . . . 22 (𝑖 = 𝑗X𝑝𝑋 (([,) ∘ (𝑙𝑖))‘𝑝) = X𝑝𝑋 (([,) ∘ (𝑙𝑗))‘𝑝))
117116cbviunv 4958 . . . . . . . . . . . . . . . . . . . . 21 𝑖 ∈ ℕ X𝑝𝑋 (([,) ∘ (𝑙𝑖))‘𝑝) = 𝑗 ∈ ℕ X𝑝𝑋 (([,) ∘ (𝑙𝑗))‘𝑝)
118117a1i 11 . . . . . . . . . . . . . . . . . . . 20 ( = 𝑙 𝑖 ∈ ℕ X𝑝𝑋 (([,) ∘ (𝑙𝑖))‘𝑝) = 𝑗 ∈ ℕ X𝑝𝑋 (([,) ∘ (𝑙𝑗))‘𝑝))
119112, 118eqtrd 2856 . . . . . . . . . . . . . . . . . . 19 ( = 𝑙 𝑖 ∈ ℕ X𝑝𝑋 (([,) ∘ (𝑖))‘𝑝) = 𝑗 ∈ ℕ X𝑝𝑋 (([,) ∘ (𝑙𝑗))‘𝑝))
120119sseq2d 3999 . . . . . . . . . . . . . . . . . 18 ( = 𝑙 → (𝑎 𝑖 ∈ ℕ X𝑝𝑋 (([,) ∘ (𝑖))‘𝑝) ↔ 𝑎 𝑗 ∈ ℕ X𝑝𝑋 (([,) ∘ (𝑙𝑗))‘𝑝)))
121120cbvrabv 3492 . . . . . . . . . . . . . . . . 17 { ∈ (((ℝ × ℝ) ↑m 𝑋) ↑m ℕ) ∣ 𝑎 𝑖 ∈ ℕ X𝑝𝑋 (([,) ∘ (𝑖))‘𝑝)} = {𝑙 ∈ (((ℝ × ℝ) ↑m 𝑋) ↑m ℕ) ∣ 𝑎 𝑗 ∈ ℕ X𝑝𝑋 (([,) ∘ (𝑙𝑗))‘𝑝)}
122106, 121eqtri 2844 . . . . . . . . . . . . . . . 16 {𝑚 ∈ (((ℝ × ℝ) ↑m 𝑋) ↑m ℕ) ∣ 𝑎 𝑖 ∈ ℕ X𝑛𝑋 (([,) ∘ (𝑚𝑖))‘𝑛)} = {𝑙 ∈ (((ℝ × ℝ) ↑m 𝑋) ↑m ℕ) ∣ 𝑎 𝑗 ∈ ℕ X𝑝𝑋 (([,) ∘ (𝑙𝑗))‘𝑝)}
123122mpteq2i 5151 . . . . . . . . . . . . . . 15 (𝑎 ∈ 𝒫 (ℝ ↑m 𝑋) ↦ {𝑚 ∈ (((ℝ × ℝ) ↑m 𝑋) ↑m ℕ) ∣ 𝑎 𝑖 ∈ ℕ X𝑛𝑋 (([,) ∘ (𝑚𝑖))‘𝑛)}) = (𝑎 ∈ 𝒫 (ℝ ↑m 𝑋) ↦ {𝑙 ∈ (((ℝ × ℝ) ↑m 𝑋) ↑m ℕ) ∣ 𝑎 𝑗 ∈ ℕ X𝑝𝑋 (([,) ∘ (𝑙𝑗))‘𝑝)})
124123a1i 11 . . . . . . . . . . . . . 14 (𝑐 = 𝑏 → (𝑎 ∈ 𝒫 (ℝ ↑m 𝑋) ↦ {𝑚 ∈ (((ℝ × ℝ) ↑m 𝑋) ↑m ℕ) ∣ 𝑎 𝑖 ∈ ℕ X𝑛𝑋 (([,) ∘ (𝑚𝑖))‘𝑛)}) = (𝑎 ∈ 𝒫 (ℝ ↑m 𝑋) ↦ {𝑙 ∈ (((ℝ × ℝ) ↑m 𝑋) ↑m ℕ) ∣ 𝑎 𝑗 ∈ ℕ X𝑝𝑋 (([,) ∘ (𝑙𝑗))‘𝑝)}))
125 id 22 . . . . . . . . . . . . . 14 (𝑐 = 𝑏𝑐 = 𝑏)
126124, 125fveq12d 6672 . . . . . . . . . . . . 13 (𝑐 = 𝑏 → ((𝑎 ∈ 𝒫 (ℝ ↑m 𝑋) ↦ {𝑚 ∈ (((ℝ × ℝ) ↑m 𝑋) ↑m ℕ) ∣ 𝑎 𝑖 ∈ ℕ X𝑛𝑋 (([,) ∘ (𝑚𝑖))‘𝑛)})‘𝑐) = ((𝑎 ∈ 𝒫 (ℝ ↑m 𝑋) ↦ {𝑙 ∈ (((ℝ × ℝ) ↑m 𝑋) ↑m ℕ) ∣ 𝑎 𝑗 ∈ ℕ X𝑝𝑋 (([,) ∘ (𝑙𝑗))‘𝑝)})‘𝑏))
127126eleq2d 2898 . . . . . . . . . . . 12 (𝑐 = 𝑏 → (𝑡 ∈ ((𝑎 ∈ 𝒫 (ℝ ↑m 𝑋) ↦ {𝑚 ∈ (((ℝ × ℝ) ↑m 𝑋) ↑m ℕ) ∣ 𝑎 𝑖 ∈ ℕ X𝑛𝑋 (([,) ∘ (𝑚𝑖))‘𝑛)})‘𝑐) ↔ 𝑡 ∈ ((𝑎 ∈ 𝒫 (ℝ ↑m 𝑋) ↦ {𝑙 ∈ (((ℝ × ℝ) ↑m 𝑋) ↑m ℕ) ∣ 𝑎 𝑗 ∈ ℕ X𝑝𝑋 (([,) ∘ (𝑙𝑗))‘𝑝)})‘𝑏)))
128 2fveq3 6670 . . . . . . . . . . . . . . . . . . . 20 (𝑚 = 𝑝 → (vol‘(([,) ∘ 𝑖)‘𝑚)) = (vol‘(([,) ∘ 𝑖)‘𝑝)))
129128cbvprodv 15264 . . . . . . . . . . . . . . . . . . 19 𝑚𝑋 (vol‘(([,) ∘ 𝑖)‘𝑚)) = ∏𝑝𝑋 (vol‘(([,) ∘ 𝑖)‘𝑝))
130129mpteq2i 5151 . . . . . . . . . . . . . . . . . 18 (𝑖 ∈ ((ℝ × ℝ) ↑m 𝑋) ↦ ∏𝑚𝑋 (vol‘(([,) ∘ 𝑖)‘𝑚))) = (𝑖 ∈ ((ℝ × ℝ) ↑m 𝑋) ↦ ∏𝑝𝑋 (vol‘(([,) ∘ 𝑖)‘𝑝)))
131130a1i 11 . . . . . . . . . . . . . . . . 17 (𝑚 = 𝑗 → (𝑖 ∈ ((ℝ × ℝ) ↑m 𝑋) ↦ ∏𝑚𝑋 (vol‘(([,) ∘ 𝑖)‘𝑚))) = (𝑖 ∈ ((ℝ × ℝ) ↑m 𝑋) ↦ ∏𝑝𝑋 (vol‘(([,) ∘ 𝑖)‘𝑝))))
132 fveq2 6665 . . . . . . . . . . . . . . . . 17 (𝑚 = 𝑗 → (𝑡𝑚) = (𝑡𝑗))
133131, 132fveq12d 6672 . . . . . . . . . . . . . . . 16 (𝑚 = 𝑗 → ((𝑖 ∈ ((ℝ × ℝ) ↑m 𝑋) ↦ ∏𝑚𝑋 (vol‘(([,) ∘ 𝑖)‘𝑚)))‘(𝑡𝑚)) = ((𝑖 ∈ ((ℝ × ℝ) ↑m 𝑋) ↦ ∏𝑝𝑋 (vol‘(([,) ∘ 𝑖)‘𝑝)))‘(𝑡𝑗)))
134133cbvmptv 5162 . . . . . . . . . . . . . . 15 (𝑚 ∈ ℕ ↦ ((𝑖 ∈ ((ℝ × ℝ) ↑m 𝑋) ↦ ∏𝑚𝑋 (vol‘(([,) ∘ 𝑖)‘𝑚)))‘(𝑡𝑚))) = (𝑗 ∈ ℕ ↦ ((𝑖 ∈ ((ℝ × ℝ) ↑m 𝑋) ↦ ∏𝑝𝑋 (vol‘(([,) ∘ 𝑖)‘𝑝)))‘(𝑡𝑗)))
135134a1i 11 . . . . . . . . . . . . . 14 (𝑐 = 𝑏 → (𝑚 ∈ ℕ ↦ ((𝑖 ∈ ((ℝ × ℝ) ↑m 𝑋) ↦ ∏𝑚𝑋 (vol‘(([,) ∘ 𝑖)‘𝑚)))‘(𝑡𝑚))) = (𝑗 ∈ ℕ ↦ ((𝑖 ∈ ((ℝ × ℝ) ↑m 𝑋) ↦ ∏𝑝𝑋 (vol‘(([,) ∘ 𝑖)‘𝑝)))‘(𝑡𝑗))))
136135fveq2d 6669 . . . . . . . . . . . . 13 (𝑐 = 𝑏 → (Σ^‘(𝑚 ∈ ℕ ↦ ((𝑖 ∈ ((ℝ × ℝ) ↑m 𝑋) ↦ ∏𝑚𝑋 (vol‘(([,) ∘ 𝑖)‘𝑚)))‘(𝑡𝑚)))) = (Σ^‘(𝑗 ∈ ℕ ↦ ((𝑖 ∈ ((ℝ × ℝ) ↑m 𝑋) ↦ ∏𝑝𝑋 (vol‘(([,) ∘ 𝑖)‘𝑝)))‘(𝑡𝑗)))))
137 fveq2 6665 . . . . . . . . . . . . . 14 (𝑐 = 𝑏 → ((voln*‘𝑋)‘𝑐) = ((voln*‘𝑋)‘𝑏))
138137oveq1d 7165 . . . . . . . . . . . . 13 (𝑐 = 𝑏 → (((voln*‘𝑋)‘𝑐) +𝑒 𝑠) = (((voln*‘𝑋)‘𝑏) +𝑒 𝑠))
139136, 138breq12d 5072 . . . . . . . . . . . 12 (𝑐 = 𝑏 → ((Σ^‘(𝑚 ∈ ℕ ↦ ((𝑖 ∈ ((ℝ × ℝ) ↑m 𝑋) ↦ ∏𝑚𝑋 (vol‘(([,) ∘ 𝑖)‘𝑚)))‘(𝑡𝑚)))) ≤ (((voln*‘𝑋)‘𝑐) +𝑒 𝑠) ↔ (Σ^‘(𝑗 ∈ ℕ ↦ ((𝑖 ∈ ((ℝ × ℝ) ↑m 𝑋) ↦ ∏𝑝𝑋 (vol‘(([,) ∘ 𝑖)‘𝑝)))‘(𝑡𝑗)))) ≤ (((voln*‘𝑋)‘𝑏) +𝑒 𝑠)))
140127, 139anbi12d 632 . . . . . . . . . . 11 (𝑐 = 𝑏 → ((𝑡 ∈ ((𝑎 ∈ 𝒫 (ℝ ↑m 𝑋) ↦ {𝑚 ∈ (((ℝ × ℝ) ↑m 𝑋) ↑m ℕ) ∣ 𝑎 𝑖 ∈ ℕ X𝑛𝑋 (([,) ∘ (𝑚𝑖))‘𝑛)})‘𝑐) ∧ (Σ^‘(𝑚 ∈ ℕ ↦ ((𝑖 ∈ ((ℝ × ℝ) ↑m 𝑋) ↦ ∏𝑚𝑋 (vol‘(([,) ∘ 𝑖)‘𝑚)))‘(𝑡𝑚)))) ≤ (((voln*‘𝑋)‘𝑐) +𝑒 𝑠)) ↔ (𝑡 ∈ ((𝑎 ∈ 𝒫 (ℝ ↑m 𝑋) ↦ {𝑙 ∈ (((ℝ × ℝ) ↑m 𝑋) ↑m ℕ) ∣ 𝑎 𝑗 ∈ ℕ X𝑝𝑋 (([,) ∘ (𝑙𝑗))‘𝑝)})‘𝑏) ∧ (Σ^‘(𝑗 ∈ ℕ ↦ ((𝑖 ∈ ((ℝ × ℝ) ↑m 𝑋) ↦ ∏𝑝𝑋 (vol‘(([,) ∘ 𝑖)‘𝑝)))‘(𝑡𝑗)))) ≤ (((voln*‘𝑋)‘𝑏) +𝑒 𝑠))))
141140rabbidva2 3477 . . . . . . . . . 10 (𝑐 = 𝑏 → {𝑡 ∈ ((𝑎 ∈ 𝒫 (ℝ ↑m 𝑋) ↦ {𝑚 ∈ (((ℝ × ℝ) ↑m 𝑋) ↑m ℕ) ∣ 𝑎 𝑖 ∈ ℕ X𝑛𝑋 (([,) ∘ (𝑚𝑖))‘𝑛)})‘𝑐) ∣ (Σ^‘(𝑚 ∈ ℕ ↦ ((𝑖 ∈ ((ℝ × ℝ) ↑m 𝑋) ↦ ∏𝑚𝑋 (vol‘(([,) ∘ 𝑖)‘𝑚)))‘(𝑡𝑚)))) ≤ (((voln*‘𝑋)‘𝑐) +𝑒 𝑠)} = {𝑡 ∈ ((𝑎 ∈ 𝒫 (ℝ ↑m 𝑋) ↦ {𝑙 ∈ (((ℝ × ℝ) ↑m 𝑋) ↑m ℕ) ∣ 𝑎 𝑗 ∈ ℕ X𝑝𝑋 (([,) ∘ (𝑙𝑗))‘𝑝)})‘𝑏) ∣ (Σ^‘(𝑗 ∈ ℕ ↦ ((𝑖 ∈ ((ℝ × ℝ) ↑m 𝑋) ↦ ∏𝑝𝑋 (vol‘(([,) ∘ 𝑖)‘𝑝)))‘(𝑡𝑗)))) ≤ (((voln*‘𝑋)‘𝑏) +𝑒 𝑠)})
142141mpteq2dv 5155 . . . . . . . . 9 (𝑐 = 𝑏 → (𝑠 ∈ ℝ+ ↦ {𝑡 ∈ ((𝑎 ∈ 𝒫 (ℝ ↑m 𝑋) ↦ {𝑚 ∈ (((ℝ × ℝ) ↑m 𝑋) ↑m ℕ) ∣ 𝑎 𝑖 ∈ ℕ X𝑛𝑋 (([,) ∘ (𝑚𝑖))‘𝑛)})‘𝑐) ∣ (Σ^‘(𝑚 ∈ ℕ ↦ ((𝑖 ∈ ((ℝ × ℝ) ↑m 𝑋) ↦ ∏𝑚𝑋 (vol‘(([,) ∘ 𝑖)‘𝑚)))‘(𝑡𝑚)))) ≤ (((voln*‘𝑋)‘𝑐) +𝑒 𝑠)}) = (𝑠 ∈ ℝ+ ↦ {𝑡 ∈ ((𝑎 ∈ 𝒫 (ℝ ↑m 𝑋) ↦ {𝑙 ∈ (((ℝ × ℝ) ↑m 𝑋) ↑m ℕ) ∣ 𝑎 𝑗 ∈ ℕ X𝑝𝑋 (([,) ∘ (𝑙𝑗))‘𝑝)})‘𝑏) ∣ (Σ^‘(𝑗 ∈ ℕ ↦ ((𝑖 ∈ ((ℝ × ℝ) ↑m 𝑋) ↦ ∏𝑝𝑋 (vol‘(([,) ∘ 𝑖)‘𝑝)))‘(𝑡𝑗)))) ≤ (((voln*‘𝑋)‘𝑏) +𝑒 𝑠)}))
143 eqidd 2822 . . . . . . . . . . . . . 14 (𝑠 = 𝑟 → ((𝑎 ∈ 𝒫 (ℝ ↑m 𝑋) ↦ {𝑙 ∈ (((ℝ × ℝ) ↑m 𝑋) ↑m ℕ) ∣ 𝑎 𝑗 ∈ ℕ X𝑝𝑋 (([,) ∘ (𝑙𝑗))‘𝑝)})‘𝑏) = ((𝑎 ∈ 𝒫 (ℝ ↑m 𝑋) ↦ {𝑙 ∈ (((ℝ × ℝ) ↑m 𝑋) ↑m ℕ) ∣ 𝑎 𝑗 ∈ ℕ X𝑝𝑋 (([,) ∘ (𝑙𝑗))‘𝑝)})‘𝑏))
144143eleq2d 2898 . . . . . . . . . . . . 13 (𝑠 = 𝑟 → (𝑡 ∈ ((𝑎 ∈ 𝒫 (ℝ ↑m 𝑋) ↦ {𝑙 ∈ (((ℝ × ℝ) ↑m 𝑋) ↑m ℕ) ∣ 𝑎 𝑗 ∈ ℕ X𝑝𝑋 (([,) ∘ (𝑙𝑗))‘𝑝)})‘𝑏) ↔ 𝑡 ∈ ((𝑎 ∈ 𝒫 (ℝ ↑m 𝑋) ↦ {𝑙 ∈ (((ℝ × ℝ) ↑m 𝑋) ↑m ℕ) ∣ 𝑎 𝑗 ∈ ℕ X𝑝𝑋 (([,) ∘ (𝑙𝑗))‘𝑝)})‘𝑏)))
145 oveq2 7158 . . . . . . . . . . . . . 14 (𝑠 = 𝑟 → (((voln*‘𝑋)‘𝑏) +𝑒 𝑠) = (((voln*‘𝑋)‘𝑏) +𝑒 𝑟))
146145breq2d 5071 . . . . . . . . . . . . 13 (𝑠 = 𝑟 → ((Σ^‘(𝑗 ∈ ℕ ↦ ((𝑖 ∈ ((ℝ × ℝ) ↑m 𝑋) ↦ ∏𝑝𝑋 (vol‘(([,) ∘ 𝑖)‘𝑝)))‘(𝑡𝑗)))) ≤ (((voln*‘𝑋)‘𝑏) +𝑒 𝑠) ↔ (Σ^‘(𝑗 ∈ ℕ ↦ ((𝑖 ∈ ((ℝ × ℝ) ↑m 𝑋) ↦ ∏𝑝𝑋 (vol‘(([,) ∘ 𝑖)‘𝑝)))‘(𝑡𝑗)))) ≤ (((voln*‘𝑋)‘𝑏) +𝑒 𝑟)))
147144, 146anbi12d 632 . . . . . . . . . . . 12 (𝑠 = 𝑟 → ((𝑡 ∈ ((𝑎 ∈ 𝒫 (ℝ ↑m 𝑋) ↦ {𝑙 ∈ (((ℝ × ℝ) ↑m 𝑋) ↑m ℕ) ∣ 𝑎 𝑗 ∈ ℕ X𝑝𝑋 (([,) ∘ (𝑙𝑗))‘𝑝)})‘𝑏) ∧ (Σ^‘(𝑗 ∈ ℕ ↦ ((𝑖 ∈ ((ℝ × ℝ) ↑m 𝑋) ↦ ∏𝑝𝑋 (vol‘(([,) ∘ 𝑖)‘𝑝)))‘(𝑡𝑗)))) ≤ (((voln*‘𝑋)‘𝑏) +𝑒 𝑠)) ↔ (𝑡 ∈ ((𝑎 ∈ 𝒫 (ℝ ↑m 𝑋) ↦ {𝑙 ∈ (((ℝ × ℝ) ↑m 𝑋) ↑m ℕ) ∣ 𝑎 𝑗 ∈ ℕ X𝑝𝑋 (([,) ∘ (𝑙𝑗))‘𝑝)})‘𝑏) ∧ (Σ^‘(𝑗 ∈ ℕ ↦ ((𝑖 ∈ ((ℝ × ℝ) ↑m 𝑋) ↦ ∏𝑝𝑋 (vol‘(([,) ∘ 𝑖)‘𝑝)))‘(𝑡𝑗)))) ≤ (((voln*‘𝑋)‘𝑏) +𝑒 𝑟))))
148147rabbidva2 3477 . . . . . . . . . . 11 (𝑠 = 𝑟 → {𝑡 ∈ ((𝑎 ∈ 𝒫 (ℝ ↑m 𝑋) ↦ {𝑙 ∈ (((ℝ × ℝ) ↑m 𝑋) ↑m ℕ) ∣ 𝑎 𝑗 ∈ ℕ X𝑝𝑋 (([,) ∘ (𝑙𝑗))‘𝑝)})‘𝑏) ∣ (Σ^‘(𝑗 ∈ ℕ ↦ ((𝑖 ∈ ((ℝ × ℝ) ↑m 𝑋) ↦ ∏𝑝𝑋 (vol‘(([,) ∘ 𝑖)‘𝑝)))‘(𝑡𝑗)))) ≤ (((voln*‘𝑋)‘𝑏) +𝑒 𝑠)} = {𝑡 ∈ ((𝑎 ∈ 𝒫 (ℝ ↑m 𝑋) ↦ {𝑙 ∈ (((ℝ × ℝ) ↑m 𝑋) ↑m ℕ) ∣ 𝑎 𝑗 ∈ ℕ X𝑝𝑋 (([,) ∘ (𝑙𝑗))‘𝑝)})‘𝑏) ∣ (Σ^‘(𝑗 ∈ ℕ ↦ ((𝑖 ∈ ((ℝ × ℝ) ↑m 𝑋) ↦ ∏𝑝𝑋 (vol‘(([,) ∘ 𝑖)‘𝑝)))‘(𝑡𝑗)))) ≤ (((voln*‘𝑋)‘𝑏) +𝑒 𝑟)})
149148cbvmptv 5162 . . . . . . . . . 10 (𝑠 ∈ ℝ+ ↦ {𝑡 ∈ ((𝑎 ∈ 𝒫 (ℝ ↑m 𝑋) ↦ {𝑙 ∈ (((ℝ × ℝ) ↑m 𝑋) ↑m ℕ) ∣ 𝑎 𝑗 ∈ ℕ X𝑝𝑋 (([,) ∘ (𝑙𝑗))‘𝑝)})‘𝑏) ∣ (Σ^‘(𝑗 ∈ ℕ ↦ ((𝑖 ∈ ((ℝ × ℝ) ↑m 𝑋) ↦ ∏𝑝𝑋 (vol‘(([,) ∘ 𝑖)‘𝑝)))‘(𝑡𝑗)))) ≤ (((voln*‘𝑋)‘𝑏) +𝑒 𝑠)}) = (𝑟 ∈ ℝ+ ↦ {𝑡 ∈ ((𝑎 ∈ 𝒫 (ℝ ↑m 𝑋) ↦ {𝑙 ∈ (((ℝ × ℝ) ↑m 𝑋) ↑m ℕ) ∣ 𝑎 𝑗 ∈ ℕ X𝑝𝑋 (([,) ∘ (𝑙𝑗))‘𝑝)})‘𝑏) ∣ (Σ^‘(𝑗 ∈ ℕ ↦ ((𝑖 ∈ ((ℝ × ℝ) ↑m 𝑋) ↦ ∏𝑝𝑋 (vol‘(([,) ∘ 𝑖)‘𝑝)))‘(𝑡𝑗)))) ≤ (((voln*‘𝑋)‘𝑏) +𝑒 𝑟)})
150149a1i 11 . . . . . . . . 9 (𝑐 = 𝑏 → (𝑠 ∈ ℝ+ ↦ {𝑡 ∈ ((𝑎 ∈ 𝒫 (ℝ ↑m 𝑋) ↦ {𝑙 ∈ (((ℝ × ℝ) ↑m 𝑋) ↑m ℕ) ∣ 𝑎 𝑗 ∈ ℕ X𝑝𝑋 (([,) ∘ (𝑙𝑗))‘𝑝)})‘𝑏) ∣ (Σ^‘(𝑗 ∈ ℕ ↦ ((𝑖 ∈ ((ℝ × ℝ) ↑m 𝑋) ↦ ∏𝑝𝑋 (vol‘(([,) ∘ 𝑖)‘𝑝)))‘(𝑡𝑗)))) ≤ (((voln*‘𝑋)‘𝑏) +𝑒 𝑠)}) = (𝑟 ∈ ℝ+ ↦ {𝑡 ∈ ((𝑎 ∈ 𝒫 (ℝ ↑m 𝑋) ↦ {𝑙 ∈ (((ℝ × ℝ) ↑m 𝑋) ↑m ℕ) ∣ 𝑎 𝑗 ∈ ℕ X𝑝𝑋 (([,) ∘ (𝑙𝑗))‘𝑝)})‘𝑏) ∣ (Σ^‘(𝑗 ∈ ℕ ↦ ((𝑖 ∈ ((ℝ × ℝ) ↑m 𝑋) ↦ ∏𝑝𝑋 (vol‘(([,) ∘ 𝑖)‘𝑝)))‘(𝑡𝑗)))) ≤ (((voln*‘𝑋)‘𝑏) +𝑒 𝑟)}))
151142, 150eqtrd 2856 . . . . . . . 8 (𝑐 = 𝑏 → (𝑠 ∈ ℝ+ ↦ {𝑡 ∈ ((𝑎 ∈ 𝒫 (ℝ ↑m 𝑋) ↦ {𝑚 ∈ (((ℝ × ℝ) ↑m 𝑋) ↑m ℕ) ∣ 𝑎 𝑖 ∈ ℕ X𝑛𝑋 (([,) ∘ (𝑚𝑖))‘𝑛)})‘𝑐) ∣ (Σ^‘(𝑚 ∈ ℕ ↦ ((𝑖 ∈ ((ℝ × ℝ) ↑m 𝑋) ↦ ∏𝑚𝑋 (vol‘(([,) ∘ 𝑖)‘𝑚)))‘(𝑡𝑚)))) ≤ (((voln*‘𝑋)‘𝑐) +𝑒 𝑠)}) = (𝑟 ∈ ℝ+ ↦ {𝑡 ∈ ((𝑎 ∈ 𝒫 (ℝ ↑m 𝑋) ↦ {𝑙 ∈ (((ℝ × ℝ) ↑m 𝑋) ↑m ℕ) ∣ 𝑎 𝑗 ∈ ℕ X𝑝𝑋 (([,) ∘ (𝑙𝑗))‘𝑝)})‘𝑏) ∣ (Σ^‘(𝑗 ∈ ℕ ↦ ((𝑖 ∈ ((ℝ × ℝ) ↑m 𝑋) ↦ ∏𝑝𝑋 (vol‘(([,) ∘ 𝑖)‘𝑝)))‘(𝑡𝑗)))) ≤ (((voln*‘𝑋)‘𝑏) +𝑒 𝑟)}))
152151cbvmptv 5162 . . . . . . 7 (𝑐 ∈ 𝒫 (ℝ ↑m 𝑋) ↦ (𝑠 ∈ ℝ+ ↦ {𝑡 ∈ ((𝑎 ∈ 𝒫 (ℝ ↑m 𝑋) ↦ {𝑚 ∈ (((ℝ × ℝ) ↑m 𝑋) ↑m ℕ) ∣ 𝑎 𝑖 ∈ ℕ X𝑛𝑋 (([,) ∘ (𝑚𝑖))‘𝑛)})‘𝑐) ∣ (Σ^‘(𝑚 ∈ ℕ ↦ ((𝑖 ∈ ((ℝ × ℝ) ↑m 𝑋) ↦ ∏𝑚𝑋 (vol‘(([,) ∘ 𝑖)‘𝑚)))‘(𝑡𝑚)))) ≤ (((voln*‘𝑋)‘𝑐) +𝑒 𝑠)})) = (𝑏 ∈ 𝒫 (ℝ ↑m 𝑋) ↦ (𝑟 ∈ ℝ+ ↦ {𝑡 ∈ ((𝑎 ∈ 𝒫 (ℝ ↑m 𝑋) ↦ {𝑙 ∈ (((ℝ × ℝ) ↑m 𝑋) ↑m ℕ) ∣ 𝑎 𝑗 ∈ ℕ X𝑝𝑋 (([,) ∘ (𝑙𝑗))‘𝑝)})‘𝑏) ∣ (Σ^‘(𝑗 ∈ ℕ ↦ ((𝑖 ∈ ((ℝ × ℝ) ↑m 𝑋) ↦ ∏𝑝𝑋 (vol‘(([,) ∘ 𝑖)‘𝑝)))‘(𝑡𝑗)))) ≤ (((voln*‘𝑋)‘𝑏) +𝑒 𝑟)}))
153 2fveq3 6670 . . . . . . . . 9 (𝑚 = 𝑝 → (1st ‘((𝑡𝑗)‘𝑚)) = (1st ‘((𝑡𝑗)‘𝑝)))
154153cbvmptv 5162 . . . . . . . 8 (𝑚𝑋 ↦ (1st ‘((𝑡𝑗)‘𝑚))) = (𝑝𝑋 ↦ (1st ‘((𝑡𝑗)‘𝑝)))
155154mpteq2i 5151 . . . . . . 7 (𝑗 ∈ ℕ ↦ (𝑚𝑋 ↦ (1st ‘((𝑡𝑗)‘𝑚)))) = (𝑗 ∈ ℕ ↦ (𝑝𝑋 ↦ (1st ‘((𝑡𝑗)‘𝑝))))
156 fveq2 6665 . . . . . . . . . . . 12 (𝑖 = 𝑗 → (𝑡𝑖) = (𝑡𝑗))
157156fveq1d 6667 . . . . . . . . . . 11 (𝑖 = 𝑗 → ((𝑡𝑖)‘𝑚) = ((𝑡𝑗)‘𝑚))
158157fveq2d 6669 . . . . . . . . . 10 (𝑖 = 𝑗 → (2nd ‘((𝑡𝑖)‘𝑚)) = (2nd ‘((𝑡𝑗)‘𝑚)))
159158mpteq2dv 5155 . . . . . . . . 9 (𝑖 = 𝑗 → (𝑚𝑋 ↦ (2nd ‘((𝑡𝑖)‘𝑚))) = (𝑚𝑋 ↦ (2nd ‘((𝑡𝑗)‘𝑚))))
160 2fveq3 6670 . . . . . . . . . . 11 (𝑚 = 𝑝 → (2nd ‘((𝑡𝑗)‘𝑚)) = (2nd ‘((𝑡𝑗)‘𝑝)))
161160cbvmptv 5162 . . . . . . . . . 10 (𝑚𝑋 ↦ (2nd ‘((𝑡𝑗)‘𝑚))) = (𝑝𝑋 ↦ (2nd ‘((𝑡𝑗)‘𝑝)))
162161a1i 11 . . . . . . . . 9 (𝑖 = 𝑗 → (𝑚𝑋 ↦ (2nd ‘((𝑡𝑗)‘𝑚))) = (𝑝𝑋 ↦ (2nd ‘((𝑡𝑗)‘𝑝))))
163159, 162eqtrd 2856 . . . . . . . 8 (𝑖 = 𝑗 → (𝑚𝑋 ↦ (2nd ‘((𝑡𝑖)‘𝑚))) = (𝑝𝑋 ↦ (2nd ‘((𝑡𝑗)‘𝑝))))
164163cbvmptv 5162 . . . . . . 7 (𝑖 ∈ ℕ ↦ (𝑚𝑋 ↦ (2nd ‘((𝑡𝑖)‘𝑚)))) = (𝑗 ∈ ℕ ↦ (𝑝𝑋 ↦ (2nd ‘((𝑡𝑗)‘𝑝))))
16539, 81, 82, 83, 84, 85, 88, 94, 152, 155, 164hspmbllem3 42903 . . . . . 6 (((𝜑𝑎 ∈ 𝒫 (ℝ ↑m 𝑋)) ∧ ((voln*‘𝑋)‘𝑎) ∈ ℝ) → (((voln*‘𝑋)‘(𝑎 ∩ (𝐾(𝐻𝑋)𝑌))) +𝑒 ((voln*‘𝑋)‘(𝑎 ∖ (𝐾(𝐻𝑋)𝑌)))) ≤ ((voln*‘𝑋)‘𝑎))
16674, 80, 165syl2anc 586 . . . . 5 (((𝜑𝑎 ∈ 𝒫 (ℝ ↑m 𝑋)) ∧ ¬ ((voln*‘𝑋)‘𝑎) = +∞) → (((voln*‘𝑋)‘(𝑎 ∩ (𝐾(𝐻𝑋)𝑌))) +𝑒 ((voln*‘𝑋)‘(𝑎 ∖ (𝐾(𝐻𝑋)𝑌)))) ≤ ((voln*‘𝑋)‘𝑎))
16773, 166pm2.61dan 811 . . . 4 ((𝜑𝑎 ∈ 𝒫 (ℝ ↑m 𝑋)) → (((voln*‘𝑋)‘(𝑎 ∩ (𝐾(𝐻𝑋)𝑌))) +𝑒 ((voln*‘𝑋)‘(𝑎 ∖ (𝐾(𝐻𝑋)𝑌)))) ≤ ((voln*‘𝑋)‘𝑎))
16852, 55, 167syl2anc 586 . . 3 ((𝜑𝑎 ∈ 𝒫 dom (voln*‘𝑋)) → (((voln*‘𝑋)‘(𝑎 ∩ (𝐾(𝐻𝑋)𝑌))) +𝑒 ((voln*‘𝑋)‘(𝑎 ∖ (𝐾(𝐻𝑋)𝑌)))) ≤ ((voln*‘𝑋)‘𝑎))
1692, 3, 4, 51, 168caragenel2d 42807 . 2 (𝜑 → (𝐾(𝐻𝑋)𝑌) ∈ (CaraGen‘(voln*‘𝑋)))
1701dmvon 42881 . . 3 (𝜑 → dom (voln‘𝑋) = (CaraGen‘(voln*‘𝑋)))
171170eqcomd 2827 . 2 (𝜑 → (CaraGen‘(voln*‘𝑋)) = dom (voln‘𝑋))
172169, 171eleqtrd 2915 1 (𝜑 → (𝐾(𝐻𝑋)𝑌) ∈ dom (voln‘𝑋))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 208  wa 398   = wceq 1533  wcel 2110  wne 3016  wral 3138  {crab 3142  Vcvv 3495  cdif 3933  cin 3935  wss 3936  ifcif 4467  𝒫 cpw 4539   cuni 4832   ciun 4912   class class class wbr 5059  cmpt 5139   × cxp 5548  dom cdm 5550  ccom 5554  cfv 6350  (class class class)co 7150  cmpo 7152  1st c1st 7681  2nd c2nd 7682  m cmap 8400  Xcixp 8455  Fincfn 8503  cr 10530  0cc0 10531  +∞cpnf 10666  -∞cmnf 10667  *cxr 10668  cle 10670  cn 11632  +crp 12383   +𝑒 cxad 12499  (,)cioo 12732  [,)cico 12734  [,]cicc 12735  cprod 15253  volcvol 24058  Σ^csumge0 42637  CaraGenccaragen 42766  voln*covoln 42811  volncvoln 42813
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1907  ax-6 1966  ax-7 2011  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2156  ax-12 2172  ax-ext 2793  ax-rep 5183  ax-sep 5196  ax-nul 5203  ax-pow 5259  ax-pr 5322  ax-un 7455  ax-inf2 9098  ax-cc 9851  ax-ac2 9879  ax-cnex 10587  ax-resscn 10588  ax-1cn 10589  ax-icn 10590  ax-addcl 10591  ax-addrcl 10592  ax-mulcl 10593  ax-mulrcl 10594  ax-mulcom 10595  ax-addass 10596  ax-mulass 10597  ax-distr 10598  ax-i2m1 10599  ax-1ne0 10600  ax-1rid 10601  ax-rnegex 10602  ax-rrecex 10603  ax-cnre 10604  ax-pre-lttri 10605  ax-pre-lttrn 10606  ax-pre-ltadd 10607  ax-pre-mulgt0 10608  ax-pre-sup 10609  ax-addf 10610  ax-mulf 10611
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1536  df-fal 1546  df-ex 1777  df-nf 1781  df-sb 2066  df-mo 2618  df-eu 2650  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-nel 3124  df-ral 3143  df-rex 3144  df-reu 3145  df-rmo 3146  df-rab 3147  df-v 3497  df-sbc 3773  df-csb 3884  df-dif 3939  df-un 3941  df-in 3943  df-ss 3952  df-pss 3954  df-nul 4292  df-if 4468  df-pw 4541  df-sn 4562  df-pr 4564  df-tp 4566  df-op 4568  df-uni 4833  df-int 4870  df-iun 4914  df-disj 5025  df-br 5060  df-opab 5122  df-mpt 5140  df-tr 5166  df-id 5455  df-eprel 5460  df-po 5469  df-so 5470  df-fr 5509  df-se 5510  df-we 5511  df-xp 5556  df-rel 5557  df-cnv 5558  df-co 5559  df-dm 5560  df-rn 5561  df-res 5562  df-ima 5563  df-pred 6143  df-ord 6189  df-on 6190  df-lim 6191  df-suc 6192  df-iota 6309  df-fun 6352  df-fn 6353  df-f 6354  df-f1 6355  df-fo 6356  df-f1o 6357  df-fv 6358  df-isom 6359  df-riota 7108  df-ov 7153  df-oprab 7154  df-mpo 7155  df-of 7403  df-om 7575  df-1st 7683  df-2nd 7684  df-tpos 7886  df-wrecs 7941  df-recs 8002  df-rdg 8040  df-1o 8096  df-2o 8097  df-oadd 8100  df-er 8283  df-map 8402  df-pm 8403  df-ixp 8456  df-en 8504  df-dom 8505  df-sdom 8506  df-fin 8507  df-fi 8869  df-sup 8900  df-inf 8901  df-oi 8968  df-dju 9324  df-card 9362  df-acn 9365  df-ac 9536  df-pnf 10671  df-mnf 10672  df-xr 10673  df-ltxr 10674  df-le 10675  df-sub 10866  df-neg 10867  df-div 11292  df-nn 11633  df-2 11694  df-3 11695  df-4 11696  df-5 11697  df-6 11698  df-7 11699  df-8 11700  df-9 11701  df-n0 11892  df-z 11976  df-dec 12093  df-uz 12238  df-q 12343  df-rp 12384  df-xneg 12501  df-xadd 12502  df-xmul 12503  df-ioo 12736  df-ico 12738  df-icc 12739  df-fz 12887  df-fzo 13028  df-fl 13156  df-seq 13364  df-exp 13424  df-hash 13685  df-cj 14452  df-re 14453  df-im 14454  df-sqrt 14588  df-abs 14589  df-clim 14839  df-rlim 14840  df-sum 15037  df-prod 15254  df-struct 16479  df-ndx 16480  df-slot 16481  df-base 16483  df-sets 16484  df-ress 16485  df-plusg 16572  df-mulr 16573  df-starv 16574  df-tset 16578  df-ple 16579  df-ds 16581  df-unif 16582  df-rest 16690  df-0g 16709  df-topgen 16711  df-mgm 17846  df-sgrp 17895  df-mnd 17906  df-grp 18100  df-minusg 18101  df-subg 18270  df-cmn 18902  df-abl 18903  df-mgp 19234  df-ur 19246  df-ring 19293  df-cring 19294  df-oppr 19367  df-dvdsr 19385  df-unit 19386  df-invr 19416  df-dvr 19427  df-drng 19498  df-psmet 20531  df-xmet 20532  df-met 20533  df-bl 20534  df-mopn 20535  df-cnfld 20540  df-top 21496  df-topon 21513  df-bases 21548  df-cmp 21989  df-ovol 24059  df-vol 24060  df-sumge0 42638  df-ome 42765  df-caragen 42767  df-ovoln 42812  df-voln 42814
This theorem is referenced by:  hoimbllem  42905
  Copyright terms: Public domain W3C validator