HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  hst1h Structured version   Visualization version   GIF version

Theorem hst1h 28947
Description: The norm of a Hilbert-space-valued state equals one iff the state value equals the state value of the lattice unit. (Contributed by NM, 25-Jun-2006.) (New usage is discouraged.)
Assertion
Ref Expression
hst1h ((𝑆 ∈ CHStates ∧ 𝐴C ) → ((norm‘(𝑆𝐴)) = 1 ↔ (𝑆𝐴) = (𝑆‘ ℋ)))

Proof of Theorem hst1h
StepHypRef Expression
1 hstcl 28937 . . . . 5 ((𝑆 ∈ CHStates ∧ 𝐴C ) → (𝑆𝐴) ∈ ℋ)
2 ax-hvaddid 27722 . . . . 5 ((𝑆𝐴) ∈ ℋ → ((𝑆𝐴) + 0) = (𝑆𝐴))
31, 2syl 17 . . . 4 ((𝑆 ∈ CHStates ∧ 𝐴C ) → ((𝑆𝐴) + 0) = (𝑆𝐴))
43adantr 481 . . 3 (((𝑆 ∈ CHStates ∧ 𝐴C ) ∧ (norm‘(𝑆𝐴)) = 1) → ((𝑆𝐴) + 0) = (𝑆𝐴))
5 ax-1cn 9941 . . . . . . . . . . . 12 1 ∈ ℂ
6 choccl 28026 . . . . . . . . . . . . . . . 16 (𝐴C → (⊥‘𝐴) ∈ C )
7 hstcl 28937 . . . . . . . . . . . . . . . 16 ((𝑆 ∈ CHStates ∧ (⊥‘𝐴) ∈ C ) → (𝑆‘(⊥‘𝐴)) ∈ ℋ)
86, 7sylan2 491 . . . . . . . . . . . . . . 15 ((𝑆 ∈ CHStates ∧ 𝐴C ) → (𝑆‘(⊥‘𝐴)) ∈ ℋ)
9 normcl 27843 . . . . . . . . . . . . . . 15 ((𝑆‘(⊥‘𝐴)) ∈ ℋ → (norm‘(𝑆‘(⊥‘𝐴))) ∈ ℝ)
108, 9syl 17 . . . . . . . . . . . . . 14 ((𝑆 ∈ CHStates ∧ 𝐴C ) → (norm‘(𝑆‘(⊥‘𝐴))) ∈ ℝ)
1110resqcld 12978 . . . . . . . . . . . . 13 ((𝑆 ∈ CHStates ∧ 𝐴C ) → ((norm‘(𝑆‘(⊥‘𝐴)))↑2) ∈ ℝ)
1211recnd 10015 . . . . . . . . . . . 12 ((𝑆 ∈ CHStates ∧ 𝐴C ) → ((norm‘(𝑆‘(⊥‘𝐴)))↑2) ∈ ℂ)
13 pncan2 10235 . . . . . . . . . . . 12 ((1 ∈ ℂ ∧ ((norm‘(𝑆‘(⊥‘𝐴)))↑2) ∈ ℂ) → ((1 + ((norm‘(𝑆‘(⊥‘𝐴)))↑2)) − 1) = ((norm‘(𝑆‘(⊥‘𝐴)))↑2))
145, 12, 13sylancr 694 . . . . . . . . . . 11 ((𝑆 ∈ CHStates ∧ 𝐴C ) → ((1 + ((norm‘(𝑆‘(⊥‘𝐴)))↑2)) − 1) = ((norm‘(𝑆‘(⊥‘𝐴)))↑2))
1514adantr 481 . . . . . . . . . 10 (((𝑆 ∈ CHStates ∧ 𝐴C ) ∧ (norm‘(𝑆𝐴)) = 1) → ((1 + ((norm‘(𝑆‘(⊥‘𝐴)))↑2)) − 1) = ((norm‘(𝑆‘(⊥‘𝐴)))↑2))
16 oveq1 6614 . . . . . . . . . . . . . 14 ((norm‘(𝑆𝐴)) = 1 → ((norm‘(𝑆𝐴))↑2) = (1↑2))
17 sq1 12901 . . . . . . . . . . . . . 14 (1↑2) = 1
1816, 17syl6req 2672 . . . . . . . . . . . . 13 ((norm‘(𝑆𝐴)) = 1 → 1 = ((norm‘(𝑆𝐴))↑2))
1918oveq1d 6622 . . . . . . . . . . . 12 ((norm‘(𝑆𝐴)) = 1 → (1 + ((norm‘(𝑆‘(⊥‘𝐴)))↑2)) = (((norm‘(𝑆𝐴))↑2) + ((norm‘(𝑆‘(⊥‘𝐴)))↑2)))
20 hstnmoc 28943 . . . . . . . . . . . 12 ((𝑆 ∈ CHStates ∧ 𝐴C ) → (((norm‘(𝑆𝐴))↑2) + ((norm‘(𝑆‘(⊥‘𝐴)))↑2)) = 1)
2119, 20sylan9eqr 2677 . . . . . . . . . . 11 (((𝑆 ∈ CHStates ∧ 𝐴C ) ∧ (norm‘(𝑆𝐴)) = 1) → (1 + ((norm‘(𝑆‘(⊥‘𝐴)))↑2)) = 1)
2221oveq1d 6622 . . . . . . . . . 10 (((𝑆 ∈ CHStates ∧ 𝐴C ) ∧ (norm‘(𝑆𝐴)) = 1) → ((1 + ((norm‘(𝑆‘(⊥‘𝐴)))↑2)) − 1) = (1 − 1))
2315, 22eqtr3d 2657 . . . . . . . . 9 (((𝑆 ∈ CHStates ∧ 𝐴C ) ∧ (norm‘(𝑆𝐴)) = 1) → ((norm‘(𝑆‘(⊥‘𝐴)))↑2) = (1 − 1))
24 1m1e0 11036 . . . . . . . . 9 (1 − 1) = 0
2523, 24syl6eq 2671 . . . . . . . 8 (((𝑆 ∈ CHStates ∧ 𝐴C ) ∧ (norm‘(𝑆𝐴)) = 1) → ((norm‘(𝑆‘(⊥‘𝐴)))↑2) = 0)
2625ex 450 . . . . . . 7 ((𝑆 ∈ CHStates ∧ 𝐴C ) → ((norm‘(𝑆𝐴)) = 1 → ((norm‘(𝑆‘(⊥‘𝐴)))↑2) = 0))
2710recnd 10015 . . . . . . . . 9 ((𝑆 ∈ CHStates ∧ 𝐴C ) → (norm‘(𝑆‘(⊥‘𝐴))) ∈ ℂ)
28 sqeq0 12870 . . . . . . . . 9 ((norm‘(𝑆‘(⊥‘𝐴))) ∈ ℂ → (((norm‘(𝑆‘(⊥‘𝐴)))↑2) = 0 ↔ (norm‘(𝑆‘(⊥‘𝐴))) = 0))
2927, 28syl 17 . . . . . . . 8 ((𝑆 ∈ CHStates ∧ 𝐴C ) → (((norm‘(𝑆‘(⊥‘𝐴)))↑2) = 0 ↔ (norm‘(𝑆‘(⊥‘𝐴))) = 0))
30 norm-i 27847 . . . . . . . . 9 ((𝑆‘(⊥‘𝐴)) ∈ ℋ → ((norm‘(𝑆‘(⊥‘𝐴))) = 0 ↔ (𝑆‘(⊥‘𝐴)) = 0))
318, 30syl 17 . . . . . . . 8 ((𝑆 ∈ CHStates ∧ 𝐴C ) → ((norm‘(𝑆‘(⊥‘𝐴))) = 0 ↔ (𝑆‘(⊥‘𝐴)) = 0))
3229, 31bitrd 268 . . . . . . 7 ((𝑆 ∈ CHStates ∧ 𝐴C ) → (((norm‘(𝑆‘(⊥‘𝐴)))↑2) = 0 ↔ (𝑆‘(⊥‘𝐴)) = 0))
3326, 32sylibd 229 . . . . . 6 ((𝑆 ∈ CHStates ∧ 𝐴C ) → ((norm‘(𝑆𝐴)) = 1 → (𝑆‘(⊥‘𝐴)) = 0))
3433imp 445 . . . . 5 (((𝑆 ∈ CHStates ∧ 𝐴C ) ∧ (norm‘(𝑆𝐴)) = 1) → (𝑆‘(⊥‘𝐴)) = 0)
3534oveq2d 6623 . . . 4 (((𝑆 ∈ CHStates ∧ 𝐴C ) ∧ (norm‘(𝑆𝐴)) = 1) → ((𝑆𝐴) + (𝑆‘(⊥‘𝐴))) = ((𝑆𝐴) + 0))
36 hstoc 28942 . . . . 5 ((𝑆 ∈ CHStates ∧ 𝐴C ) → ((𝑆𝐴) + (𝑆‘(⊥‘𝐴))) = (𝑆‘ ℋ))
3736adantr 481 . . . 4 (((𝑆 ∈ CHStates ∧ 𝐴C ) ∧ (norm‘(𝑆𝐴)) = 1) → ((𝑆𝐴) + (𝑆‘(⊥‘𝐴))) = (𝑆‘ ℋ))
3835, 37eqtr3d 2657 . . 3 (((𝑆 ∈ CHStates ∧ 𝐴C ) ∧ (norm‘(𝑆𝐴)) = 1) → ((𝑆𝐴) + 0) = (𝑆‘ ℋ))
394, 38eqtr3d 2657 . 2 (((𝑆 ∈ CHStates ∧ 𝐴C ) ∧ (norm‘(𝑆𝐴)) = 1) → (𝑆𝐴) = (𝑆‘ ℋ))
40 fveq2 6150 . . 3 ((𝑆𝐴) = (𝑆‘ ℋ) → (norm‘(𝑆𝐴)) = (norm‘(𝑆‘ ℋ)))
41 hst1a 28938 . . . 4 (𝑆 ∈ CHStates → (norm‘(𝑆‘ ℋ)) = 1)
4241adantr 481 . . 3 ((𝑆 ∈ CHStates ∧ 𝐴C ) → (norm‘(𝑆‘ ℋ)) = 1)
4340, 42sylan9eqr 2677 . 2 (((𝑆 ∈ CHStates ∧ 𝐴C ) ∧ (𝑆𝐴) = (𝑆‘ ℋ)) → (norm‘(𝑆𝐴)) = 1)
4439, 43impbida 876 1 ((𝑆 ∈ CHStates ∧ 𝐴C ) → ((norm‘(𝑆𝐴)) = 1 ↔ (𝑆𝐴) = (𝑆‘ ℋ)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 384   = wceq 1480  wcel 1987  cfv 5849  (class class class)co 6607  cc 9881  cr 9882  0cc0 9883  1c1 9884   + caddc 9886  cmin 10213  2c2 11017  cexp 12803  chil 27637   + cva 27638  normcno 27641  0c0v 27642   C cch 27647  cort 27648  CHStateschst 27681
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-8 1989  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601  ax-rep 4733  ax-sep 4743  ax-nul 4751  ax-pow 4805  ax-pr 4869  ax-un 6905  ax-inf2 8485  ax-cnex 9939  ax-resscn 9940  ax-1cn 9941  ax-icn 9942  ax-addcl 9943  ax-addrcl 9944  ax-mulcl 9945  ax-mulrcl 9946  ax-mulcom 9947  ax-addass 9948  ax-mulass 9949  ax-distr 9950  ax-i2m1 9951  ax-1ne0 9952  ax-1rid 9953  ax-rnegex 9954  ax-rrecex 9955  ax-cnre 9956  ax-pre-lttri 9957  ax-pre-lttrn 9958  ax-pre-ltadd 9959  ax-pre-mulgt0 9960  ax-pre-sup 9961  ax-addf 9962  ax-mulf 9963  ax-hilex 27717  ax-hfvadd 27718  ax-hvcom 27719  ax-hvass 27720  ax-hv0cl 27721  ax-hvaddid 27722  ax-hfvmul 27723  ax-hvmulid 27724  ax-hvmulass 27725  ax-hvdistr1 27726  ax-hvdistr2 27727  ax-hvmul0 27728  ax-hfi 27797  ax-his1 27800  ax-his2 27801  ax-his3 27802  ax-his4 27803  ax-hcompl 27920
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1037  df-3an 1038  df-tru 1483  df-fal 1486  df-ex 1702  df-nf 1707  df-sb 1878  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-ne 2791  df-nel 2894  df-ral 2912  df-rex 2913  df-reu 2914  df-rmo 2915  df-rab 2916  df-v 3188  df-sbc 3419  df-csb 3516  df-dif 3559  df-un 3561  df-in 3563  df-ss 3570  df-pss 3572  df-nul 3894  df-if 4061  df-pw 4134  df-sn 4151  df-pr 4153  df-tp 4155  df-op 4157  df-uni 4405  df-int 4443  df-iun 4489  df-iin 4490  df-br 4616  df-opab 4676  df-mpt 4677  df-tr 4715  df-eprel 4987  df-id 4991  df-po 4997  df-so 4998  df-fr 5035  df-se 5036  df-we 5037  df-xp 5082  df-rel 5083  df-cnv 5084  df-co 5085  df-dm 5086  df-rn 5087  df-res 5088  df-ima 5089  df-pred 5641  df-ord 5687  df-on 5688  df-lim 5689  df-suc 5690  df-iota 5812  df-fun 5851  df-fn 5852  df-f 5853  df-f1 5854  df-fo 5855  df-f1o 5856  df-fv 5857  df-isom 5858  df-riota 6568  df-ov 6610  df-oprab 6611  df-mpt2 6612  df-of 6853  df-om 7016  df-1st 7116  df-2nd 7117  df-supp 7244  df-wrecs 7355  df-recs 7416  df-rdg 7454  df-1o 7508  df-2o 7509  df-oadd 7512  df-er 7690  df-map 7807  df-pm 7808  df-ixp 7856  df-en 7903  df-dom 7904  df-sdom 7905  df-fin 7906  df-fsupp 8223  df-fi 8264  df-sup 8295  df-inf 8296  df-oi 8362  df-card 8712  df-cda 8937  df-pnf 10023  df-mnf 10024  df-xr 10025  df-ltxr 10026  df-le 10027  df-sub 10215  df-neg 10216  df-div 10632  df-nn 10968  df-2 11026  df-3 11027  df-4 11028  df-5 11029  df-6 11030  df-7 11031  df-8 11032  df-9 11033  df-n0 11240  df-z 11325  df-dec 11441  df-uz 11635  df-q 11736  df-rp 11780  df-xneg 11893  df-xadd 11894  df-xmul 11895  df-ioo 12124  df-icc 12127  df-fz 12272  df-fzo 12410  df-seq 12745  df-exp 12804  df-hash 13061  df-cj 13776  df-re 13777  df-im 13778  df-sqrt 13912  df-abs 13913  df-clim 14156  df-sum 14354  df-struct 15786  df-ndx 15787  df-slot 15788  df-base 15789  df-sets 15790  df-ress 15791  df-plusg 15878  df-mulr 15879  df-starv 15880  df-sca 15881  df-vsca 15882  df-ip 15883  df-tset 15884  df-ple 15885  df-ds 15888  df-unif 15889  df-hom 15890  df-cco 15891  df-rest 16007  df-topn 16008  df-0g 16026  df-gsum 16027  df-topgen 16028  df-pt 16029  df-prds 16032  df-xrs 16086  df-qtop 16091  df-imas 16092  df-xps 16094  df-mre 16170  df-mrc 16171  df-acs 16173  df-mgm 17166  df-sgrp 17208  df-mnd 17219  df-submnd 17260  df-mulg 17465  df-cntz 17674  df-cmn 18119  df-psmet 19660  df-xmet 19661  df-met 19662  df-bl 19663  df-mopn 19664  df-cnfld 19669  df-top 20621  df-topon 20638  df-topsp 20651  df-bases 20664  df-cn 20944  df-cnp 20945  df-lm 20946  df-haus 21032  df-tx 21278  df-hmeo 21471  df-xms 22038  df-ms 22039  df-tms 22040  df-cau 22967  df-grpo 27208  df-gid 27209  df-ginv 27210  df-gdiv 27211  df-ablo 27260  df-vc 27275  df-nv 27308  df-va 27311  df-ba 27312  df-sm 27313  df-0v 27314  df-vs 27315  df-nmcv 27316  df-ims 27317  df-dip 27417  df-hnorm 27686  df-hvsub 27689  df-hlim 27690  df-hcau 27691  df-sh 27925  df-ch 27939  df-oc 27970  df-ch0 27971  df-chj 28030  df-hst 28932
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator