HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  hst1h Structured version   Visualization version   GIF version

Theorem hst1h 30003
Description: The norm of a Hilbert-space-valued state equals one iff the state value equals the state value of the lattice unit. (Contributed by NM, 25-Jun-2006.) (New usage is discouraged.)
Assertion
Ref Expression
hst1h ((𝑆 ∈ CHStates ∧ 𝐴C ) → ((norm‘(𝑆𝐴)) = 1 ↔ (𝑆𝐴) = (𝑆‘ ℋ)))

Proof of Theorem hst1h
StepHypRef Expression
1 hstcl 29993 . . . . 5 ((𝑆 ∈ CHStates ∧ 𝐴C ) → (𝑆𝐴) ∈ ℋ)
2 ax-hvaddid 28780 . . . . 5 ((𝑆𝐴) ∈ ℋ → ((𝑆𝐴) + 0) = (𝑆𝐴))
31, 2syl 17 . . . 4 ((𝑆 ∈ CHStates ∧ 𝐴C ) → ((𝑆𝐴) + 0) = (𝑆𝐴))
43adantr 483 . . 3 (((𝑆 ∈ CHStates ∧ 𝐴C ) ∧ (norm‘(𝑆𝐴)) = 1) → ((𝑆𝐴) + 0) = (𝑆𝐴))
5 ax-1cn 10594 . . . . . . . . . . . 12 1 ∈ ℂ
6 choccl 29082 . . . . . . . . . . . . . . . 16 (𝐴C → (⊥‘𝐴) ∈ C )
7 hstcl 29993 . . . . . . . . . . . . . . . 16 ((𝑆 ∈ CHStates ∧ (⊥‘𝐴) ∈ C ) → (𝑆‘(⊥‘𝐴)) ∈ ℋ)
86, 7sylan2 594 . . . . . . . . . . . . . . 15 ((𝑆 ∈ CHStates ∧ 𝐴C ) → (𝑆‘(⊥‘𝐴)) ∈ ℋ)
9 normcl 28901 . . . . . . . . . . . . . . 15 ((𝑆‘(⊥‘𝐴)) ∈ ℋ → (norm‘(𝑆‘(⊥‘𝐴))) ∈ ℝ)
108, 9syl 17 . . . . . . . . . . . . . 14 ((𝑆 ∈ CHStates ∧ 𝐴C ) → (norm‘(𝑆‘(⊥‘𝐴))) ∈ ℝ)
1110resqcld 13610 . . . . . . . . . . . . 13 ((𝑆 ∈ CHStates ∧ 𝐴C ) → ((norm‘(𝑆‘(⊥‘𝐴)))↑2) ∈ ℝ)
1211recnd 10668 . . . . . . . . . . . 12 ((𝑆 ∈ CHStates ∧ 𝐴C ) → ((norm‘(𝑆‘(⊥‘𝐴)))↑2) ∈ ℂ)
13 pncan2 10892 . . . . . . . . . . . 12 ((1 ∈ ℂ ∧ ((norm‘(𝑆‘(⊥‘𝐴)))↑2) ∈ ℂ) → ((1 + ((norm‘(𝑆‘(⊥‘𝐴)))↑2)) − 1) = ((norm‘(𝑆‘(⊥‘𝐴)))↑2))
145, 12, 13sylancr 589 . . . . . . . . . . 11 ((𝑆 ∈ CHStates ∧ 𝐴C ) → ((1 + ((norm‘(𝑆‘(⊥‘𝐴)))↑2)) − 1) = ((norm‘(𝑆‘(⊥‘𝐴)))↑2))
1514adantr 483 . . . . . . . . . 10 (((𝑆 ∈ CHStates ∧ 𝐴C ) ∧ (norm‘(𝑆𝐴)) = 1) → ((1 + ((norm‘(𝑆‘(⊥‘𝐴)))↑2)) − 1) = ((norm‘(𝑆‘(⊥‘𝐴)))↑2))
16 oveq1 7162 . . . . . . . . . . . . . 14 ((norm‘(𝑆𝐴)) = 1 → ((norm‘(𝑆𝐴))↑2) = (1↑2))
17 sq1 13557 . . . . . . . . . . . . . 14 (1↑2) = 1
1816, 17syl6req 2873 . . . . . . . . . . . . 13 ((norm‘(𝑆𝐴)) = 1 → 1 = ((norm‘(𝑆𝐴))↑2))
1918oveq1d 7170 . . . . . . . . . . . 12 ((norm‘(𝑆𝐴)) = 1 → (1 + ((norm‘(𝑆‘(⊥‘𝐴)))↑2)) = (((norm‘(𝑆𝐴))↑2) + ((norm‘(𝑆‘(⊥‘𝐴)))↑2)))
20 hstnmoc 29999 . . . . . . . . . . . 12 ((𝑆 ∈ CHStates ∧ 𝐴C ) → (((norm‘(𝑆𝐴))↑2) + ((norm‘(𝑆‘(⊥‘𝐴)))↑2)) = 1)
2119, 20sylan9eqr 2878 . . . . . . . . . . 11 (((𝑆 ∈ CHStates ∧ 𝐴C ) ∧ (norm‘(𝑆𝐴)) = 1) → (1 + ((norm‘(𝑆‘(⊥‘𝐴)))↑2)) = 1)
2221oveq1d 7170 . . . . . . . . . 10 (((𝑆 ∈ CHStates ∧ 𝐴C ) ∧ (norm‘(𝑆𝐴)) = 1) → ((1 + ((norm‘(𝑆‘(⊥‘𝐴)))↑2)) − 1) = (1 − 1))
2315, 22eqtr3d 2858 . . . . . . . . 9 (((𝑆 ∈ CHStates ∧ 𝐴C ) ∧ (norm‘(𝑆𝐴)) = 1) → ((norm‘(𝑆‘(⊥‘𝐴)))↑2) = (1 − 1))
24 1m1e0 11708 . . . . . . . . 9 (1 − 1) = 0
2523, 24syl6eq 2872 . . . . . . . 8 (((𝑆 ∈ CHStates ∧ 𝐴C ) ∧ (norm‘(𝑆𝐴)) = 1) → ((norm‘(𝑆‘(⊥‘𝐴)))↑2) = 0)
2625ex 415 . . . . . . 7 ((𝑆 ∈ CHStates ∧ 𝐴C ) → ((norm‘(𝑆𝐴)) = 1 → ((norm‘(𝑆‘(⊥‘𝐴)))↑2) = 0))
2710recnd 10668 . . . . . . . . 9 ((𝑆 ∈ CHStates ∧ 𝐴C ) → (norm‘(𝑆‘(⊥‘𝐴))) ∈ ℂ)
28 sqeq0 13485 . . . . . . . . 9 ((norm‘(𝑆‘(⊥‘𝐴))) ∈ ℂ → (((norm‘(𝑆‘(⊥‘𝐴)))↑2) = 0 ↔ (norm‘(𝑆‘(⊥‘𝐴))) = 0))
2927, 28syl 17 . . . . . . . 8 ((𝑆 ∈ CHStates ∧ 𝐴C ) → (((norm‘(𝑆‘(⊥‘𝐴)))↑2) = 0 ↔ (norm‘(𝑆‘(⊥‘𝐴))) = 0))
30 norm-i 28905 . . . . . . . . 9 ((𝑆‘(⊥‘𝐴)) ∈ ℋ → ((norm‘(𝑆‘(⊥‘𝐴))) = 0 ↔ (𝑆‘(⊥‘𝐴)) = 0))
318, 30syl 17 . . . . . . . 8 ((𝑆 ∈ CHStates ∧ 𝐴C ) → ((norm‘(𝑆‘(⊥‘𝐴))) = 0 ↔ (𝑆‘(⊥‘𝐴)) = 0))
3229, 31bitrd 281 . . . . . . 7 ((𝑆 ∈ CHStates ∧ 𝐴C ) → (((norm‘(𝑆‘(⊥‘𝐴)))↑2) = 0 ↔ (𝑆‘(⊥‘𝐴)) = 0))
3326, 32sylibd 241 . . . . . 6 ((𝑆 ∈ CHStates ∧ 𝐴C ) → ((norm‘(𝑆𝐴)) = 1 → (𝑆‘(⊥‘𝐴)) = 0))
3433imp 409 . . . . 5 (((𝑆 ∈ CHStates ∧ 𝐴C ) ∧ (norm‘(𝑆𝐴)) = 1) → (𝑆‘(⊥‘𝐴)) = 0)
3534oveq2d 7171 . . . 4 (((𝑆 ∈ CHStates ∧ 𝐴C ) ∧ (norm‘(𝑆𝐴)) = 1) → ((𝑆𝐴) + (𝑆‘(⊥‘𝐴))) = ((𝑆𝐴) + 0))
36 hstoc 29998 . . . . 5 ((𝑆 ∈ CHStates ∧ 𝐴C ) → ((𝑆𝐴) + (𝑆‘(⊥‘𝐴))) = (𝑆‘ ℋ))
3736adantr 483 . . . 4 (((𝑆 ∈ CHStates ∧ 𝐴C ) ∧ (norm‘(𝑆𝐴)) = 1) → ((𝑆𝐴) + (𝑆‘(⊥‘𝐴))) = (𝑆‘ ℋ))
3835, 37eqtr3d 2858 . . 3 (((𝑆 ∈ CHStates ∧ 𝐴C ) ∧ (norm‘(𝑆𝐴)) = 1) → ((𝑆𝐴) + 0) = (𝑆‘ ℋ))
394, 38eqtr3d 2858 . 2 (((𝑆 ∈ CHStates ∧ 𝐴C ) ∧ (norm‘(𝑆𝐴)) = 1) → (𝑆𝐴) = (𝑆‘ ℋ))
40 fveq2 6669 . . 3 ((𝑆𝐴) = (𝑆‘ ℋ) → (norm‘(𝑆𝐴)) = (norm‘(𝑆‘ ℋ)))
41 hst1a 29994 . . . 4 (𝑆 ∈ CHStates → (norm‘(𝑆‘ ℋ)) = 1)
4241adantr 483 . . 3 ((𝑆 ∈ CHStates ∧ 𝐴C ) → (norm‘(𝑆‘ ℋ)) = 1)
4340, 42sylan9eqr 2878 . 2 (((𝑆 ∈ CHStates ∧ 𝐴C ) ∧ (𝑆𝐴) = (𝑆‘ ℋ)) → (norm‘(𝑆𝐴)) = 1)
4439, 43impbida 799 1 ((𝑆 ∈ CHStates ∧ 𝐴C ) → ((norm‘(𝑆𝐴)) = 1 ↔ (𝑆𝐴) = (𝑆‘ ℋ)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wa 398   = wceq 1533  wcel 2110  cfv 6354  (class class class)co 7155  cc 10534  cr 10535  0cc0 10536  1c1 10537   + caddc 10539  cmin 10869  2c2 11691  cexp 13428  chba 28695   + cva 28696  normcno 28699  0c0v 28700   C cch 28705  cort 28706  CHStateschst 28739
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1907  ax-6 1966  ax-7 2011  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2157  ax-12 2173  ax-ext 2793  ax-rep 5189  ax-sep 5202  ax-nul 5209  ax-pow 5265  ax-pr 5329  ax-un 7460  ax-inf2 9103  ax-cnex 10592  ax-resscn 10593  ax-1cn 10594  ax-icn 10595  ax-addcl 10596  ax-addrcl 10597  ax-mulcl 10598  ax-mulrcl 10599  ax-mulcom 10600  ax-addass 10601  ax-mulass 10602  ax-distr 10603  ax-i2m1 10604  ax-1ne0 10605  ax-1rid 10606  ax-rnegex 10607  ax-rrecex 10608  ax-cnre 10609  ax-pre-lttri 10610  ax-pre-lttrn 10611  ax-pre-ltadd 10612  ax-pre-mulgt0 10613  ax-pre-sup 10614  ax-addf 10615  ax-mulf 10616  ax-hilex 28775  ax-hfvadd 28776  ax-hvcom 28777  ax-hvass 28778  ax-hv0cl 28779  ax-hvaddid 28780  ax-hfvmul 28781  ax-hvmulid 28782  ax-hvmulass 28783  ax-hvdistr1 28784  ax-hvdistr2 28785  ax-hvmul0 28786  ax-hfi 28855  ax-his1 28858  ax-his2 28859  ax-his3 28860  ax-his4 28861  ax-hcompl 28978
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1536  df-fal 1546  df-ex 1777  df-nf 1781  df-sb 2066  df-mo 2618  df-eu 2650  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-nel 3124  df-ral 3143  df-rex 3144  df-reu 3145  df-rmo 3146  df-rab 3147  df-v 3496  df-sbc 3772  df-csb 3883  df-dif 3938  df-un 3940  df-in 3942  df-ss 3951  df-pss 3953  df-nul 4291  df-if 4467  df-pw 4540  df-sn 4567  df-pr 4569  df-tp 4571  df-op 4573  df-uni 4838  df-int 4876  df-iun 4920  df-iin 4921  df-br 5066  df-opab 5128  df-mpt 5146  df-tr 5172  df-id 5459  df-eprel 5464  df-po 5473  df-so 5474  df-fr 5513  df-se 5514  df-we 5515  df-xp 5560  df-rel 5561  df-cnv 5562  df-co 5563  df-dm 5564  df-rn 5565  df-res 5566  df-ima 5567  df-pred 6147  df-ord 6193  df-on 6194  df-lim 6195  df-suc 6196  df-iota 6313  df-fun 6356  df-fn 6357  df-f 6358  df-f1 6359  df-fo 6360  df-f1o 6361  df-fv 6362  df-isom 6363  df-riota 7113  df-ov 7158  df-oprab 7159  df-mpo 7160  df-of 7408  df-om 7580  df-1st 7688  df-2nd 7689  df-supp 7830  df-wrecs 7946  df-recs 8007  df-rdg 8045  df-1o 8101  df-2o 8102  df-oadd 8105  df-er 8288  df-map 8407  df-pm 8408  df-ixp 8461  df-en 8509  df-dom 8510  df-sdom 8511  df-fin 8512  df-fsupp 8833  df-fi 8874  df-sup 8905  df-inf 8906  df-oi 8973  df-card 9367  df-pnf 10676  df-mnf 10677  df-xr 10678  df-ltxr 10679  df-le 10680  df-sub 10871  df-neg 10872  df-div 11297  df-nn 11638  df-2 11699  df-3 11700  df-4 11701  df-5 11702  df-6 11703  df-7 11704  df-8 11705  df-9 11706  df-n0 11897  df-z 11981  df-dec 12098  df-uz 12243  df-q 12348  df-rp 12389  df-xneg 12506  df-xadd 12507  df-xmul 12508  df-ioo 12741  df-icc 12744  df-fz 12892  df-fzo 13033  df-seq 13369  df-exp 13429  df-hash 13690  df-cj 14457  df-re 14458  df-im 14459  df-sqrt 14593  df-abs 14594  df-clim 14844  df-sum 15042  df-struct 16484  df-ndx 16485  df-slot 16486  df-base 16488  df-sets 16489  df-ress 16490  df-plusg 16577  df-mulr 16578  df-starv 16579  df-sca 16580  df-vsca 16581  df-ip 16582  df-tset 16583  df-ple 16584  df-ds 16586  df-unif 16587  df-hom 16588  df-cco 16589  df-rest 16695  df-topn 16696  df-0g 16714  df-gsum 16715  df-topgen 16716  df-pt 16717  df-prds 16720  df-xrs 16774  df-qtop 16779  df-imas 16780  df-xps 16782  df-mre 16856  df-mrc 16857  df-acs 16859  df-mgm 17851  df-sgrp 17900  df-mnd 17911  df-submnd 17956  df-mulg 18224  df-cntz 18446  df-cmn 18907  df-psmet 20536  df-xmet 20537  df-met 20538  df-bl 20539  df-mopn 20540  df-cnfld 20545  df-top 21501  df-topon 21518  df-topsp 21540  df-bases 21553  df-cn 21834  df-cnp 21835  df-lm 21836  df-haus 21922  df-tx 22169  df-hmeo 22362  df-xms 22929  df-ms 22930  df-tms 22931  df-cau 23858  df-grpo 28269  df-gid 28270  df-ginv 28271  df-gdiv 28272  df-ablo 28321  df-vc 28335  df-nv 28368  df-va 28371  df-ba 28372  df-sm 28373  df-0v 28374  df-vs 28375  df-nmcv 28376  df-ims 28377  df-dip 28477  df-hnorm 28744  df-hvsub 28747  df-hlim 28748  df-hcau 28749  df-sh 28983  df-ch 28997  df-oc 29028  df-ch0 29029  df-chj 29086  df-hst 29988
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator