HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  hstel2 Structured version   Visualization version   GIF version

Theorem hstel2 29990
Description: Properties of a Hilbert-space-valued state. (Contributed by NM, 25-Jun-2006.) (New usage is discouraged.)
Assertion
Ref Expression
hstel2 (((𝑆 ∈ CHStates ∧ 𝐴C ) ∧ (𝐵C𝐴 ⊆ (⊥‘𝐵))) → (((𝑆𝐴) ·ih (𝑆𝐵)) = 0 ∧ (𝑆‘(𝐴 𝐵)) = ((𝑆𝐴) + (𝑆𝐵))))

Proof of Theorem hstel2
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ishst 29985 . . . 4 (𝑆 ∈ CHStates ↔ (𝑆: C ⟶ ℋ ∧ (norm‘(𝑆‘ ℋ)) = 1 ∧ ∀𝑥C𝑦C (𝑥 ⊆ (⊥‘𝑦) → (((𝑆𝑥) ·ih (𝑆𝑦)) = 0 ∧ (𝑆‘(𝑥 𝑦)) = ((𝑆𝑥) + (𝑆𝑦))))))
21simp3bi 1143 . . 3 (𝑆 ∈ CHStates → ∀𝑥C𝑦C (𝑥 ⊆ (⊥‘𝑦) → (((𝑆𝑥) ·ih (𝑆𝑦)) = 0 ∧ (𝑆‘(𝑥 𝑦)) = ((𝑆𝑥) + (𝑆𝑦)))))
32ad2antrr 724 . 2 (((𝑆 ∈ CHStates ∧ 𝐴C ) ∧ (𝐵C𝐴 ⊆ (⊥‘𝐵))) → ∀𝑥C𝑦C (𝑥 ⊆ (⊥‘𝑦) → (((𝑆𝑥) ·ih (𝑆𝑦)) = 0 ∧ (𝑆‘(𝑥 𝑦)) = ((𝑆𝑥) + (𝑆𝑦)))))
4 sseq1 3991 . . . . . . 7 (𝑥 = 𝐴 → (𝑥 ⊆ (⊥‘𝑦) ↔ 𝐴 ⊆ (⊥‘𝑦)))
5 fveq2 6664 . . . . . . . . . 10 (𝑥 = 𝐴 → (𝑆𝑥) = (𝑆𝐴))
65oveq1d 7165 . . . . . . . . 9 (𝑥 = 𝐴 → ((𝑆𝑥) ·ih (𝑆𝑦)) = ((𝑆𝐴) ·ih (𝑆𝑦)))
76eqeq1d 2823 . . . . . . . 8 (𝑥 = 𝐴 → (((𝑆𝑥) ·ih (𝑆𝑦)) = 0 ↔ ((𝑆𝐴) ·ih (𝑆𝑦)) = 0))
8 fvoveq1 7173 . . . . . . . . 9 (𝑥 = 𝐴 → (𝑆‘(𝑥 𝑦)) = (𝑆‘(𝐴 𝑦)))
95oveq1d 7165 . . . . . . . . 9 (𝑥 = 𝐴 → ((𝑆𝑥) + (𝑆𝑦)) = ((𝑆𝐴) + (𝑆𝑦)))
108, 9eqeq12d 2837 . . . . . . . 8 (𝑥 = 𝐴 → ((𝑆‘(𝑥 𝑦)) = ((𝑆𝑥) + (𝑆𝑦)) ↔ (𝑆‘(𝐴 𝑦)) = ((𝑆𝐴) + (𝑆𝑦))))
117, 10anbi12d 632 . . . . . . 7 (𝑥 = 𝐴 → ((((𝑆𝑥) ·ih (𝑆𝑦)) = 0 ∧ (𝑆‘(𝑥 𝑦)) = ((𝑆𝑥) + (𝑆𝑦))) ↔ (((𝑆𝐴) ·ih (𝑆𝑦)) = 0 ∧ (𝑆‘(𝐴 𝑦)) = ((𝑆𝐴) + (𝑆𝑦)))))
124, 11imbi12d 347 . . . . . 6 (𝑥 = 𝐴 → ((𝑥 ⊆ (⊥‘𝑦) → (((𝑆𝑥) ·ih (𝑆𝑦)) = 0 ∧ (𝑆‘(𝑥 𝑦)) = ((𝑆𝑥) + (𝑆𝑦)))) ↔ (𝐴 ⊆ (⊥‘𝑦) → (((𝑆𝐴) ·ih (𝑆𝑦)) = 0 ∧ (𝑆‘(𝐴 𝑦)) = ((𝑆𝐴) + (𝑆𝑦))))))
13 fveq2 6664 . . . . . . . 8 (𝑦 = 𝐵 → (⊥‘𝑦) = (⊥‘𝐵))
1413sseq2d 3998 . . . . . . 7 (𝑦 = 𝐵 → (𝐴 ⊆ (⊥‘𝑦) ↔ 𝐴 ⊆ (⊥‘𝐵)))
15 fveq2 6664 . . . . . . . . . 10 (𝑦 = 𝐵 → (𝑆𝑦) = (𝑆𝐵))
1615oveq2d 7166 . . . . . . . . 9 (𝑦 = 𝐵 → ((𝑆𝐴) ·ih (𝑆𝑦)) = ((𝑆𝐴) ·ih (𝑆𝐵)))
1716eqeq1d 2823 . . . . . . . 8 (𝑦 = 𝐵 → (((𝑆𝐴) ·ih (𝑆𝑦)) = 0 ↔ ((𝑆𝐴) ·ih (𝑆𝐵)) = 0))
18 oveq2 7158 . . . . . . . . . 10 (𝑦 = 𝐵 → (𝐴 𝑦) = (𝐴 𝐵))
1918fveq2d 6668 . . . . . . . . 9 (𝑦 = 𝐵 → (𝑆‘(𝐴 𝑦)) = (𝑆‘(𝐴 𝐵)))
2015oveq2d 7166 . . . . . . . . 9 (𝑦 = 𝐵 → ((𝑆𝐴) + (𝑆𝑦)) = ((𝑆𝐴) + (𝑆𝐵)))
2119, 20eqeq12d 2837 . . . . . . . 8 (𝑦 = 𝐵 → ((𝑆‘(𝐴 𝑦)) = ((𝑆𝐴) + (𝑆𝑦)) ↔ (𝑆‘(𝐴 𝐵)) = ((𝑆𝐴) + (𝑆𝐵))))
2217, 21anbi12d 632 . . . . . . 7 (𝑦 = 𝐵 → ((((𝑆𝐴) ·ih (𝑆𝑦)) = 0 ∧ (𝑆‘(𝐴 𝑦)) = ((𝑆𝐴) + (𝑆𝑦))) ↔ (((𝑆𝐴) ·ih (𝑆𝐵)) = 0 ∧ (𝑆‘(𝐴 𝐵)) = ((𝑆𝐴) + (𝑆𝐵)))))
2314, 22imbi12d 347 . . . . . 6 (𝑦 = 𝐵 → ((𝐴 ⊆ (⊥‘𝑦) → (((𝑆𝐴) ·ih (𝑆𝑦)) = 0 ∧ (𝑆‘(𝐴 𝑦)) = ((𝑆𝐴) + (𝑆𝑦)))) ↔ (𝐴 ⊆ (⊥‘𝐵) → (((𝑆𝐴) ·ih (𝑆𝐵)) = 0 ∧ (𝑆‘(𝐴 𝐵)) = ((𝑆𝐴) + (𝑆𝐵))))))
2412, 23rspc2v 3632 . . . . 5 ((𝐴C𝐵C ) → (∀𝑥C𝑦C (𝑥 ⊆ (⊥‘𝑦) → (((𝑆𝑥) ·ih (𝑆𝑦)) = 0 ∧ (𝑆‘(𝑥 𝑦)) = ((𝑆𝑥) + (𝑆𝑦)))) → (𝐴 ⊆ (⊥‘𝐵) → (((𝑆𝐴) ·ih (𝑆𝐵)) = 0 ∧ (𝑆‘(𝐴 𝐵)) = ((𝑆𝐴) + (𝑆𝐵))))))
2524com23 86 . . . 4 ((𝐴C𝐵C ) → (𝐴 ⊆ (⊥‘𝐵) → (∀𝑥C𝑦C (𝑥 ⊆ (⊥‘𝑦) → (((𝑆𝑥) ·ih (𝑆𝑦)) = 0 ∧ (𝑆‘(𝑥 𝑦)) = ((𝑆𝑥) + (𝑆𝑦)))) → (((𝑆𝐴) ·ih (𝑆𝐵)) = 0 ∧ (𝑆‘(𝐴 𝐵)) = ((𝑆𝐴) + (𝑆𝐵))))))
2625impr 457 . . 3 ((𝐴C ∧ (𝐵C𝐴 ⊆ (⊥‘𝐵))) → (∀𝑥C𝑦C (𝑥 ⊆ (⊥‘𝑦) → (((𝑆𝑥) ·ih (𝑆𝑦)) = 0 ∧ (𝑆‘(𝑥 𝑦)) = ((𝑆𝑥) + (𝑆𝑦)))) → (((𝑆𝐴) ·ih (𝑆𝐵)) = 0 ∧ (𝑆‘(𝐴 𝐵)) = ((𝑆𝐴) + (𝑆𝐵)))))
2726adantll 712 . 2 (((𝑆 ∈ CHStates ∧ 𝐴C ) ∧ (𝐵C𝐴 ⊆ (⊥‘𝐵))) → (∀𝑥C𝑦C (𝑥 ⊆ (⊥‘𝑦) → (((𝑆𝑥) ·ih (𝑆𝑦)) = 0 ∧ (𝑆‘(𝑥 𝑦)) = ((𝑆𝑥) + (𝑆𝑦)))) → (((𝑆𝐴) ·ih (𝑆𝐵)) = 0 ∧ (𝑆‘(𝐴 𝐵)) = ((𝑆𝐴) + (𝑆𝐵)))))
283, 27mpd 15 1 (((𝑆 ∈ CHStates ∧ 𝐴C ) ∧ (𝐵C𝐴 ⊆ (⊥‘𝐵))) → (((𝑆𝐴) ·ih (𝑆𝐵)) = 0 ∧ (𝑆‘(𝐴 𝐵)) = ((𝑆𝐴) + (𝑆𝐵))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 398   = wceq 1533  wcel 2110  wral 3138  wss 3935  wf 6345  cfv 6349  (class class class)co 7150  0cc0 10531  1c1 10532  chba 28690   + cva 28691   ·ih csp 28693  normcno 28694   C cch 28700  cort 28701   chj 28704  CHStateschst 28734
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1907  ax-6 1966  ax-7 2011  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2157  ax-12 2173  ax-ext 2793  ax-sep 5195  ax-nul 5202  ax-pow 5258  ax-pr 5321  ax-un 7455  ax-hilex 28770
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3an 1085  df-tru 1536  df-ex 1777  df-nf 1781  df-sb 2066  df-mo 2618  df-eu 2650  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ral 3143  df-rex 3144  df-rab 3147  df-v 3496  df-sbc 3772  df-dif 3938  df-un 3940  df-in 3942  df-ss 3951  df-nul 4291  df-if 4467  df-pw 4540  df-sn 4561  df-pr 4563  df-op 4567  df-uni 4832  df-br 5059  df-opab 5121  df-id 5454  df-xp 5555  df-rel 5556  df-cnv 5557  df-co 5558  df-dm 5559  df-rn 5560  df-res 5561  df-ima 5562  df-iota 6308  df-fun 6351  df-fn 6352  df-f 6353  df-fv 6357  df-ov 7153  df-oprab 7154  df-mpo 7155  df-map 8402  df-sh 28978  df-ch 28992  df-hst 29983
This theorem is referenced by:  hstorth  29991  hstosum  29992
  Copyright terms: Public domain W3C validator