HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  hstle Structured version   Visualization version   GIF version

Theorem hstle 29059
Description: Ordering property of a Hilbert-space-valued state. (Contributed by NM, 26-Jun-2006.) (New usage is discouraged.)
Assertion
Ref Expression
hstle (((𝑆 ∈ CHStates ∧ 𝐴C ) ∧ (𝐵C𝐴𝐵)) → (norm‘(𝑆𝐴)) ≤ (norm‘(𝑆𝐵)))

Proof of Theorem hstle
StepHypRef Expression
1 hstnmoc 29052 . . . . . . . 8 ((𝑆 ∈ CHStates ∧ 𝐵C ) → (((norm‘(𝑆𝐵))↑2) + ((norm‘(𝑆‘(⊥‘𝐵)))↑2)) = 1)
21adantlr 750 . . . . . . 7 (((𝑆 ∈ CHStates ∧ 𝐴C ) ∧ 𝐵C ) → (((norm‘(𝑆𝐵))↑2) + ((norm‘(𝑆‘(⊥‘𝐵)))↑2)) = 1)
32oveq2d 6651 . . . . . 6 (((𝑆 ∈ CHStates ∧ 𝐴C ) ∧ 𝐵C ) → (((norm‘(𝑆𝐴))↑2) + (((norm‘(𝑆𝐵))↑2) + ((norm‘(𝑆‘(⊥‘𝐵)))↑2))) = (((norm‘(𝑆𝐴))↑2) + 1))
4 hstcl 29046 . . . . . . . . . . 11 ((𝑆 ∈ CHStates ∧ 𝐴C ) → (𝑆𝐴) ∈ ℋ)
5 normcl 27952 . . . . . . . . . . 11 ((𝑆𝐴) ∈ ℋ → (norm‘(𝑆𝐴)) ∈ ℝ)
64, 5syl 17 . . . . . . . . . 10 ((𝑆 ∈ CHStates ∧ 𝐴C ) → (norm‘(𝑆𝐴)) ∈ ℝ)
76resqcld 13018 . . . . . . . . 9 ((𝑆 ∈ CHStates ∧ 𝐴C ) → ((norm‘(𝑆𝐴))↑2) ∈ ℝ)
87adantr 481 . . . . . . . 8 (((𝑆 ∈ CHStates ∧ 𝐴C ) ∧ 𝐵C ) → ((norm‘(𝑆𝐴))↑2) ∈ ℝ)
98recnd 10053 . . . . . . 7 (((𝑆 ∈ CHStates ∧ 𝐴C ) ∧ 𝐵C ) → ((norm‘(𝑆𝐴))↑2) ∈ ℂ)
10 hstcl 29046 . . . . . . . . . . 11 ((𝑆 ∈ CHStates ∧ 𝐵C ) → (𝑆𝐵) ∈ ℋ)
11 normcl 27952 . . . . . . . . . . 11 ((𝑆𝐵) ∈ ℋ → (norm‘(𝑆𝐵)) ∈ ℝ)
1210, 11syl 17 . . . . . . . . . 10 ((𝑆 ∈ CHStates ∧ 𝐵C ) → (norm‘(𝑆𝐵)) ∈ ℝ)
1312resqcld 13018 . . . . . . . . 9 ((𝑆 ∈ CHStates ∧ 𝐵C ) → ((norm‘(𝑆𝐵))↑2) ∈ ℝ)
1413adantlr 750 . . . . . . . 8 (((𝑆 ∈ CHStates ∧ 𝐴C ) ∧ 𝐵C ) → ((norm‘(𝑆𝐵))↑2) ∈ ℝ)
1514recnd 10053 . . . . . . 7 (((𝑆 ∈ CHStates ∧ 𝐴C ) ∧ 𝐵C ) → ((norm‘(𝑆𝐵))↑2) ∈ ℂ)
16 choccl 28135 . . . . . . . . . . . 12 (𝐵C → (⊥‘𝐵) ∈ C )
17 hstcl 29046 . . . . . . . . . . . 12 ((𝑆 ∈ CHStates ∧ (⊥‘𝐵) ∈ C ) → (𝑆‘(⊥‘𝐵)) ∈ ℋ)
1816, 17sylan2 491 . . . . . . . . . . 11 ((𝑆 ∈ CHStates ∧ 𝐵C ) → (𝑆‘(⊥‘𝐵)) ∈ ℋ)
19 normcl 27952 . . . . . . . . . . 11 ((𝑆‘(⊥‘𝐵)) ∈ ℋ → (norm‘(𝑆‘(⊥‘𝐵))) ∈ ℝ)
2018, 19syl 17 . . . . . . . . . 10 ((𝑆 ∈ CHStates ∧ 𝐵C ) → (norm‘(𝑆‘(⊥‘𝐵))) ∈ ℝ)
2120resqcld 13018 . . . . . . . . 9 ((𝑆 ∈ CHStates ∧ 𝐵C ) → ((norm‘(𝑆‘(⊥‘𝐵)))↑2) ∈ ℝ)
2221adantlr 750 . . . . . . . 8 (((𝑆 ∈ CHStates ∧ 𝐴C ) ∧ 𝐵C ) → ((norm‘(𝑆‘(⊥‘𝐵)))↑2) ∈ ℝ)
2322recnd 10053 . . . . . . 7 (((𝑆 ∈ CHStates ∧ 𝐴C ) ∧ 𝐵C ) → ((norm‘(𝑆‘(⊥‘𝐵)))↑2) ∈ ℂ)
249, 15, 23add12d 10247 . . . . . 6 (((𝑆 ∈ CHStates ∧ 𝐴C ) ∧ 𝐵C ) → (((norm‘(𝑆𝐴))↑2) + (((norm‘(𝑆𝐵))↑2) + ((norm‘(𝑆‘(⊥‘𝐵)))↑2))) = (((norm‘(𝑆𝐵))↑2) + (((norm‘(𝑆𝐴))↑2) + ((norm‘(𝑆‘(⊥‘𝐵)))↑2))))
253, 24eqtr3d 2656 . . . . 5 (((𝑆 ∈ CHStates ∧ 𝐴C ) ∧ 𝐵C ) → (((norm‘(𝑆𝐴))↑2) + 1) = (((norm‘(𝑆𝐵))↑2) + (((norm‘(𝑆𝐴))↑2) + ((norm‘(𝑆‘(⊥‘𝐵)))↑2))))
2625adantrr 752 . . . 4 (((𝑆 ∈ CHStates ∧ 𝐴C ) ∧ (𝐵C𝐴𝐵)) → (((norm‘(𝑆𝐴))↑2) + 1) = (((norm‘(𝑆𝐵))↑2) + (((norm‘(𝑆𝐴))↑2) + ((norm‘(𝑆‘(⊥‘𝐵)))↑2))))
2716adantr 481 . . . . . . . 8 ((𝐵C𝐴𝐵) → (⊥‘𝐵) ∈ C )
28 ococ 28235 . . . . . . . . . 10 (𝐵C → (⊥‘(⊥‘𝐵)) = 𝐵)
2928sseq2d 3625 . . . . . . . . 9 (𝐵C → (𝐴 ⊆ (⊥‘(⊥‘𝐵)) ↔ 𝐴𝐵))
3029biimpar 502 . . . . . . . 8 ((𝐵C𝐴𝐵) → 𝐴 ⊆ (⊥‘(⊥‘𝐵)))
3127, 30jca 554 . . . . . . 7 ((𝐵C𝐴𝐵) → ((⊥‘𝐵) ∈ C𝐴 ⊆ (⊥‘(⊥‘𝐵))))
32 hstpyth 29058 . . . . . . 7 (((𝑆 ∈ CHStates ∧ 𝐴C ) ∧ ((⊥‘𝐵) ∈ C𝐴 ⊆ (⊥‘(⊥‘𝐵)))) → ((norm‘(𝑆‘(𝐴 (⊥‘𝐵))))↑2) = (((norm‘(𝑆𝐴))↑2) + ((norm‘(𝑆‘(⊥‘𝐵)))↑2)))
3331, 32sylan2 491 . . . . . 6 (((𝑆 ∈ CHStates ∧ 𝐴C ) ∧ (𝐵C𝐴𝐵)) → ((norm‘(𝑆‘(𝐴 (⊥‘𝐵))))↑2) = (((norm‘(𝑆𝐴))↑2) + ((norm‘(𝑆‘(⊥‘𝐵)))↑2)))
34 chjcl 28186 . . . . . . . . . . . . 13 ((𝐴C ∧ (⊥‘𝐵) ∈ C ) → (𝐴 (⊥‘𝐵)) ∈ C )
3516, 34sylan2 491 . . . . . . . . . . . 12 ((𝐴C𝐵C ) → (𝐴 (⊥‘𝐵)) ∈ C )
36 hstcl 29046 . . . . . . . . . . . 12 ((𝑆 ∈ CHStates ∧ (𝐴 (⊥‘𝐵)) ∈ C ) → (𝑆‘(𝐴 (⊥‘𝐵))) ∈ ℋ)
3735, 36sylan2 491 . . . . . . . . . . 11 ((𝑆 ∈ CHStates ∧ (𝐴C𝐵C )) → (𝑆‘(𝐴 (⊥‘𝐵))) ∈ ℋ)
3837anassrs 679 . . . . . . . . . 10 (((𝑆 ∈ CHStates ∧ 𝐴C ) ∧ 𝐵C ) → (𝑆‘(𝐴 (⊥‘𝐵))) ∈ ℋ)
39 normcl 27952 . . . . . . . . . 10 ((𝑆‘(𝐴 (⊥‘𝐵))) ∈ ℋ → (norm‘(𝑆‘(𝐴 (⊥‘𝐵)))) ∈ ℝ)
4038, 39syl 17 . . . . . . . . 9 (((𝑆 ∈ CHStates ∧ 𝐴C ) ∧ 𝐵C ) → (norm‘(𝑆‘(𝐴 (⊥‘𝐵)))) ∈ ℝ)
41 normge0 27953 . . . . . . . . . 10 ((𝑆‘(𝐴 (⊥‘𝐵))) ∈ ℋ → 0 ≤ (norm‘(𝑆‘(𝐴 (⊥‘𝐵)))))
4238, 41syl 17 . . . . . . . . 9 (((𝑆 ∈ CHStates ∧ 𝐴C ) ∧ 𝐵C ) → 0 ≤ (norm‘(𝑆‘(𝐴 (⊥‘𝐵)))))
43 hstle1 29055 . . . . . . . . . . 11 ((𝑆 ∈ CHStates ∧ (𝐴 (⊥‘𝐵)) ∈ C ) → (norm‘(𝑆‘(𝐴 (⊥‘𝐵)))) ≤ 1)
4435, 43sylan2 491 . . . . . . . . . 10 ((𝑆 ∈ CHStates ∧ (𝐴C𝐵C )) → (norm‘(𝑆‘(𝐴 (⊥‘𝐵)))) ≤ 1)
4544anassrs 679 . . . . . . . . 9 (((𝑆 ∈ CHStates ∧ 𝐴C ) ∧ 𝐵C ) → (norm‘(𝑆‘(𝐴 (⊥‘𝐵)))) ≤ 1)
46 1re 10024 . . . . . . . . . 10 1 ∈ ℝ
47 le2sq2 12922 . . . . . . . . . 10 ((((norm‘(𝑆‘(𝐴 (⊥‘𝐵)))) ∈ ℝ ∧ 0 ≤ (norm‘(𝑆‘(𝐴 (⊥‘𝐵))))) ∧ (1 ∈ ℝ ∧ (norm‘(𝑆‘(𝐴 (⊥‘𝐵)))) ≤ 1)) → ((norm‘(𝑆‘(𝐴 (⊥‘𝐵))))↑2) ≤ (1↑2))
4846, 47mpanr1 718 . . . . . . . . 9 ((((norm‘(𝑆‘(𝐴 (⊥‘𝐵)))) ∈ ℝ ∧ 0 ≤ (norm‘(𝑆‘(𝐴 (⊥‘𝐵))))) ∧ (norm‘(𝑆‘(𝐴 (⊥‘𝐵)))) ≤ 1) → ((norm‘(𝑆‘(𝐴 (⊥‘𝐵))))↑2) ≤ (1↑2))
4940, 42, 45, 48syl21anc 1323 . . . . . . . 8 (((𝑆 ∈ CHStates ∧ 𝐴C ) ∧ 𝐵C ) → ((norm‘(𝑆‘(𝐴 (⊥‘𝐵))))↑2) ≤ (1↑2))
50 sq1 12941 . . . . . . . 8 (1↑2) = 1
5149, 50syl6breq 4685 . . . . . . 7 (((𝑆 ∈ CHStates ∧ 𝐴C ) ∧ 𝐵C ) → ((norm‘(𝑆‘(𝐴 (⊥‘𝐵))))↑2) ≤ 1)
5251adantrr 752 . . . . . 6 (((𝑆 ∈ CHStates ∧ 𝐴C ) ∧ (𝐵C𝐴𝐵)) → ((norm‘(𝑆‘(𝐴 (⊥‘𝐵))))↑2) ≤ 1)
5333, 52eqbrtrrd 4668 . . . . 5 (((𝑆 ∈ CHStates ∧ 𝐴C ) ∧ (𝐵C𝐴𝐵)) → (((norm‘(𝑆𝐴))↑2) + ((norm‘(𝑆‘(⊥‘𝐵)))↑2)) ≤ 1)
548, 22readdcld 10054 . . . . . . 7 (((𝑆 ∈ CHStates ∧ 𝐴C ) ∧ 𝐵C ) → (((norm‘(𝑆𝐴))↑2) + ((norm‘(𝑆‘(⊥‘𝐵)))↑2)) ∈ ℝ)
55 leadd2 10482 . . . . . . . 8 (((((norm‘(𝑆𝐴))↑2) + ((norm‘(𝑆‘(⊥‘𝐵)))↑2)) ∈ ℝ ∧ 1 ∈ ℝ ∧ ((norm‘(𝑆𝐵))↑2) ∈ ℝ) → ((((norm‘(𝑆𝐴))↑2) + ((norm‘(𝑆‘(⊥‘𝐵)))↑2)) ≤ 1 ↔ (((norm‘(𝑆𝐵))↑2) + (((norm‘(𝑆𝐴))↑2) + ((norm‘(𝑆‘(⊥‘𝐵)))↑2))) ≤ (((norm‘(𝑆𝐵))↑2) + 1)))
5646, 55mp3an2 1410 . . . . . . 7 (((((norm‘(𝑆𝐴))↑2) + ((norm‘(𝑆‘(⊥‘𝐵)))↑2)) ∈ ℝ ∧ ((norm‘(𝑆𝐵))↑2) ∈ ℝ) → ((((norm‘(𝑆𝐴))↑2) + ((norm‘(𝑆‘(⊥‘𝐵)))↑2)) ≤ 1 ↔ (((norm‘(𝑆𝐵))↑2) + (((norm‘(𝑆𝐴))↑2) + ((norm‘(𝑆‘(⊥‘𝐵)))↑2))) ≤ (((norm‘(𝑆𝐵))↑2) + 1)))
5754, 14, 56syl2anc 692 . . . . . 6 (((𝑆 ∈ CHStates ∧ 𝐴C ) ∧ 𝐵C ) → ((((norm‘(𝑆𝐴))↑2) + ((norm‘(𝑆‘(⊥‘𝐵)))↑2)) ≤ 1 ↔ (((norm‘(𝑆𝐵))↑2) + (((norm‘(𝑆𝐴))↑2) + ((norm‘(𝑆‘(⊥‘𝐵)))↑2))) ≤ (((norm‘(𝑆𝐵))↑2) + 1)))
5857adantrr 752 . . . . 5 (((𝑆 ∈ CHStates ∧ 𝐴C ) ∧ (𝐵C𝐴𝐵)) → ((((norm‘(𝑆𝐴))↑2) + ((norm‘(𝑆‘(⊥‘𝐵)))↑2)) ≤ 1 ↔ (((norm‘(𝑆𝐵))↑2) + (((norm‘(𝑆𝐴))↑2) + ((norm‘(𝑆‘(⊥‘𝐵)))↑2))) ≤ (((norm‘(𝑆𝐵))↑2) + 1)))
5953, 58mpbid 222 . . . 4 (((𝑆 ∈ CHStates ∧ 𝐴C ) ∧ (𝐵C𝐴𝐵)) → (((norm‘(𝑆𝐵))↑2) + (((norm‘(𝑆𝐴))↑2) + ((norm‘(𝑆‘(⊥‘𝐵)))↑2))) ≤ (((norm‘(𝑆𝐵))↑2) + 1))
6026, 59eqbrtrd 4666 . . 3 (((𝑆 ∈ CHStates ∧ 𝐴C ) ∧ (𝐵C𝐴𝐵)) → (((norm‘(𝑆𝐴))↑2) + 1) ≤ (((norm‘(𝑆𝐵))↑2) + 1))
61 leadd1 10481 . . . . . 6 ((((norm‘(𝑆𝐴))↑2) ∈ ℝ ∧ ((norm‘(𝑆𝐵))↑2) ∈ ℝ ∧ 1 ∈ ℝ) → (((norm‘(𝑆𝐴))↑2) ≤ ((norm‘(𝑆𝐵))↑2) ↔ (((norm‘(𝑆𝐴))↑2) + 1) ≤ (((norm‘(𝑆𝐵))↑2) + 1)))
6246, 61mp3an3 1411 . . . . 5 ((((norm‘(𝑆𝐴))↑2) ∈ ℝ ∧ ((norm‘(𝑆𝐵))↑2) ∈ ℝ) → (((norm‘(𝑆𝐴))↑2) ≤ ((norm‘(𝑆𝐵))↑2) ↔ (((norm‘(𝑆𝐴))↑2) + 1) ≤ (((norm‘(𝑆𝐵))↑2) + 1)))
638, 14, 62syl2anc 692 . . . 4 (((𝑆 ∈ CHStates ∧ 𝐴C ) ∧ 𝐵C ) → (((norm‘(𝑆𝐴))↑2) ≤ ((norm‘(𝑆𝐵))↑2) ↔ (((norm‘(𝑆𝐴))↑2) + 1) ≤ (((norm‘(𝑆𝐵))↑2) + 1)))
6463adantrr 752 . . 3 (((𝑆 ∈ CHStates ∧ 𝐴C ) ∧ (𝐵C𝐴𝐵)) → (((norm‘(𝑆𝐴))↑2) ≤ ((norm‘(𝑆𝐵))↑2) ↔ (((norm‘(𝑆𝐴))↑2) + 1) ≤ (((norm‘(𝑆𝐵))↑2) + 1)))
6560, 64mpbird 247 . 2 (((𝑆 ∈ CHStates ∧ 𝐴C ) ∧ (𝐵C𝐴𝐵)) → ((norm‘(𝑆𝐴))↑2) ≤ ((norm‘(𝑆𝐵))↑2))
66 normge0 27953 . . . . . . 7 ((𝑆𝐴) ∈ ℋ → 0 ≤ (norm‘(𝑆𝐴)))
674, 66syl 17 . . . . . 6 ((𝑆 ∈ CHStates ∧ 𝐴C ) → 0 ≤ (norm‘(𝑆𝐴)))
686, 67jca 554 . . . . 5 ((𝑆 ∈ CHStates ∧ 𝐴C ) → ((norm‘(𝑆𝐴)) ∈ ℝ ∧ 0 ≤ (norm‘(𝑆𝐴))))
6968adantr 481 . . . 4 (((𝑆 ∈ CHStates ∧ 𝐴C ) ∧ 𝐵C ) → ((norm‘(𝑆𝐴)) ∈ ℝ ∧ 0 ≤ (norm‘(𝑆𝐴))))
70 normge0 27953 . . . . . . 7 ((𝑆𝐵) ∈ ℋ → 0 ≤ (norm‘(𝑆𝐵)))
7110, 70syl 17 . . . . . 6 ((𝑆 ∈ CHStates ∧ 𝐵C ) → 0 ≤ (norm‘(𝑆𝐵)))
7212, 71jca 554 . . . . 5 ((𝑆 ∈ CHStates ∧ 𝐵C ) → ((norm‘(𝑆𝐵)) ∈ ℝ ∧ 0 ≤ (norm‘(𝑆𝐵))))
7372adantlr 750 . . . 4 (((𝑆 ∈ CHStates ∧ 𝐴C ) ∧ 𝐵C ) → ((norm‘(𝑆𝐵)) ∈ ℝ ∧ 0 ≤ (norm‘(𝑆𝐵))))
74 le2sq 12921 . . . 4 ((((norm‘(𝑆𝐴)) ∈ ℝ ∧ 0 ≤ (norm‘(𝑆𝐴))) ∧ ((norm‘(𝑆𝐵)) ∈ ℝ ∧ 0 ≤ (norm‘(𝑆𝐵)))) → ((norm‘(𝑆𝐴)) ≤ (norm‘(𝑆𝐵)) ↔ ((norm‘(𝑆𝐴))↑2) ≤ ((norm‘(𝑆𝐵))↑2)))
7569, 73, 74syl2anc 692 . . 3 (((𝑆 ∈ CHStates ∧ 𝐴C ) ∧ 𝐵C ) → ((norm‘(𝑆𝐴)) ≤ (norm‘(𝑆𝐵)) ↔ ((norm‘(𝑆𝐴))↑2) ≤ ((norm‘(𝑆𝐵))↑2)))
7675adantrr 752 . 2 (((𝑆 ∈ CHStates ∧ 𝐴C ) ∧ (𝐵C𝐴𝐵)) → ((norm‘(𝑆𝐴)) ≤ (norm‘(𝑆𝐵)) ↔ ((norm‘(𝑆𝐴))↑2) ≤ ((norm‘(𝑆𝐵))↑2)))
7765, 76mpbird 247 1 (((𝑆 ∈ CHStates ∧ 𝐴C ) ∧ (𝐵C𝐴𝐵)) → (norm‘(𝑆𝐴)) ≤ (norm‘(𝑆𝐵)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 384   = wceq 1481  wcel 1988  wss 3567   class class class wbr 4644  cfv 5876  (class class class)co 6635  cr 9920  0cc0 9921  1c1 9922   + caddc 9924  cle 10060  2c2 11055  cexp 12843  chil 27746  normcno 27750   C cch 27756  cort 27757   chj 27760  CHStateschst 27790
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1720  ax-4 1735  ax-5 1837  ax-6 1886  ax-7 1933  ax-8 1990  ax-9 1997  ax-10 2017  ax-11 2032  ax-12 2045  ax-13 2244  ax-ext 2600  ax-rep 4762  ax-sep 4772  ax-nul 4780  ax-pow 4834  ax-pr 4897  ax-un 6934  ax-inf2 8523  ax-cc 9242  ax-cnex 9977  ax-resscn 9978  ax-1cn 9979  ax-icn 9980  ax-addcl 9981  ax-addrcl 9982  ax-mulcl 9983  ax-mulrcl 9984  ax-mulcom 9985  ax-addass 9986  ax-mulass 9987  ax-distr 9988  ax-i2m1 9989  ax-1ne0 9990  ax-1rid 9991  ax-rnegex 9992  ax-rrecex 9993  ax-cnre 9994  ax-pre-lttri 9995  ax-pre-lttrn 9996  ax-pre-ltadd 9997  ax-pre-mulgt0 9998  ax-pre-sup 9999  ax-addf 10000  ax-mulf 10001  ax-hilex 27826  ax-hfvadd 27827  ax-hvcom 27828  ax-hvass 27829  ax-hv0cl 27830  ax-hvaddid 27831  ax-hfvmul 27832  ax-hvmulid 27833  ax-hvmulass 27834  ax-hvdistr1 27835  ax-hvdistr2 27836  ax-hvmul0 27837  ax-hfi 27906  ax-his1 27909  ax-his2 27910  ax-his3 27911  ax-his4 27912  ax-hcompl 28029
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1037  df-3an 1038  df-tru 1484  df-fal 1487  df-ex 1703  df-nf 1708  df-sb 1879  df-eu 2472  df-mo 2473  df-clab 2607  df-cleq 2613  df-clel 2616  df-nfc 2751  df-ne 2792  df-nel 2895  df-ral 2914  df-rex 2915  df-reu 2916  df-rmo 2917  df-rab 2918  df-v 3197  df-sbc 3430  df-csb 3527  df-dif 3570  df-un 3572  df-in 3574  df-ss 3581  df-pss 3583  df-nul 3908  df-if 4078  df-pw 4151  df-sn 4169  df-pr 4171  df-tp 4173  df-op 4175  df-uni 4428  df-int 4467  df-iun 4513  df-iin 4514  df-br 4645  df-opab 4704  df-mpt 4721  df-tr 4744  df-id 5014  df-eprel 5019  df-po 5025  df-so 5026  df-fr 5063  df-se 5064  df-we 5065  df-xp 5110  df-rel 5111  df-cnv 5112  df-co 5113  df-dm 5114  df-rn 5115  df-res 5116  df-ima 5117  df-pred 5668  df-ord 5714  df-on 5715  df-lim 5716  df-suc 5717  df-iota 5839  df-fun 5878  df-fn 5879  df-f 5880  df-f1 5881  df-fo 5882  df-f1o 5883  df-fv 5884  df-isom 5885  df-riota 6596  df-ov 6638  df-oprab 6639  df-mpt2 6640  df-of 6882  df-om 7051  df-1st 7153  df-2nd 7154  df-supp 7281  df-wrecs 7392  df-recs 7453  df-rdg 7491  df-1o 7545  df-2o 7546  df-oadd 7549  df-omul 7550  df-er 7727  df-map 7844  df-pm 7845  df-ixp 7894  df-en 7941  df-dom 7942  df-sdom 7943  df-fin 7944  df-fsupp 8261  df-fi 8302  df-sup 8333  df-inf 8334  df-oi 8400  df-card 8750  df-acn 8753  df-cda 8975  df-pnf 10061  df-mnf 10062  df-xr 10063  df-ltxr 10064  df-le 10065  df-sub 10253  df-neg 10254  df-div 10670  df-nn 11006  df-2 11064  df-3 11065  df-4 11066  df-5 11067  df-6 11068  df-7 11069  df-8 11070  df-9 11071  df-n0 11278  df-z 11363  df-dec 11479  df-uz 11673  df-q 11774  df-rp 11818  df-xneg 11931  df-xadd 11932  df-xmul 11933  df-ioo 12164  df-ico 12166  df-icc 12167  df-fz 12312  df-fzo 12450  df-fl 12576  df-seq 12785  df-exp 12844  df-hash 13101  df-cj 13820  df-re 13821  df-im 13822  df-sqrt 13956  df-abs 13957  df-clim 14200  df-rlim 14201  df-sum 14398  df-struct 15840  df-ndx 15841  df-slot 15842  df-base 15844  df-sets 15845  df-ress 15846  df-plusg 15935  df-mulr 15936  df-starv 15937  df-sca 15938  df-vsca 15939  df-ip 15940  df-tset 15941  df-ple 15942  df-ds 15945  df-unif 15946  df-hom 15947  df-cco 15948  df-rest 16064  df-topn 16065  df-0g 16083  df-gsum 16084  df-topgen 16085  df-pt 16086  df-prds 16089  df-xrs 16143  df-qtop 16148  df-imas 16149  df-xps 16151  df-mre 16227  df-mrc 16228  df-acs 16230  df-mgm 17223  df-sgrp 17265  df-mnd 17276  df-submnd 17317  df-mulg 17522  df-cntz 17731  df-cmn 18176  df-psmet 19719  df-xmet 19720  df-met 19721  df-bl 19722  df-mopn 19723  df-fbas 19724  df-fg 19725  df-cnfld 19728  df-top 20680  df-topon 20697  df-topsp 20718  df-bases 20731  df-cld 20804  df-ntr 20805  df-cls 20806  df-nei 20883  df-cn 21012  df-cnp 21013  df-lm 21014  df-haus 21100  df-tx 21346  df-hmeo 21539  df-fil 21631  df-fm 21723  df-flim 21724  df-flf 21725  df-xms 22106  df-ms 22107  df-tms 22108  df-cfil 23034  df-cau 23035  df-cmet 23036  df-grpo 27317  df-gid 27318  df-ginv 27319  df-gdiv 27320  df-ablo 27369  df-vc 27384  df-nv 27417  df-va 27420  df-ba 27421  df-sm 27422  df-0v 27423  df-vs 27424  df-nmcv 27425  df-ims 27426  df-dip 27526  df-ssp 27547  df-ph 27638  df-cbn 27689  df-hnorm 27795  df-hba 27796  df-hvsub 27798  df-hlim 27799  df-hcau 27800  df-sh 28034  df-ch 28048  df-oc 28079  df-ch0 28080  df-chj 28139  df-hst 29041
This theorem is referenced by:  hstles  29060
  Copyright terms: Public domain W3C validator