HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  hstpyth Structured version   Visualization version   GIF version

Theorem hstpyth 30008
Description: Pythagorean property of a Hilbert-space-valued state for orthogonal vectors 𝐴 and 𝐵. (Contributed by NM, 26-Jun-2006.) (New usage is discouraged.)
Assertion
Ref Expression
hstpyth (((𝑆 ∈ CHStates ∧ 𝐴C ) ∧ (𝐵C𝐴 ⊆ (⊥‘𝐵))) → ((norm‘(𝑆‘(𝐴 𝐵)))↑2) = (((norm‘(𝑆𝐴))↑2) + ((norm‘(𝑆𝐵))↑2)))

Proof of Theorem hstpyth
StepHypRef Expression
1 hstosum 30000 . . . 4 (((𝑆 ∈ CHStates ∧ 𝐴C ) ∧ (𝐵C𝐴 ⊆ (⊥‘𝐵))) → (𝑆‘(𝐴 𝐵)) = ((𝑆𝐴) + (𝑆𝐵)))
21fveq2d 6676 . . 3 (((𝑆 ∈ CHStates ∧ 𝐴C ) ∧ (𝐵C𝐴 ⊆ (⊥‘𝐵))) → (norm‘(𝑆‘(𝐴 𝐵))) = (norm‘((𝑆𝐴) + (𝑆𝐵))))
32oveq1d 7173 . 2 (((𝑆 ∈ CHStates ∧ 𝐴C ) ∧ (𝐵C𝐴 ⊆ (⊥‘𝐵))) → ((norm‘(𝑆‘(𝐴 𝐵)))↑2) = ((norm‘((𝑆𝐴) + (𝑆𝐵)))↑2))
4 hstcl 29996 . . . 4 ((𝑆 ∈ CHStates ∧ 𝐴C ) → (𝑆𝐴) ∈ ℋ)
54adantr 483 . . 3 (((𝑆 ∈ CHStates ∧ 𝐴C ) ∧ (𝐵C𝐴 ⊆ (⊥‘𝐵))) → (𝑆𝐴) ∈ ℋ)
6 hstcl 29996 . . . 4 ((𝑆 ∈ CHStates ∧ 𝐵C ) → (𝑆𝐵) ∈ ℋ)
76ad2ant2r 745 . . 3 (((𝑆 ∈ CHStates ∧ 𝐴C ) ∧ (𝐵C𝐴 ⊆ (⊥‘𝐵))) → (𝑆𝐵) ∈ ℋ)
8 hstorth 29999 . . 3 (((𝑆 ∈ CHStates ∧ 𝐴C ) ∧ (𝐵C𝐴 ⊆ (⊥‘𝐵))) → ((𝑆𝐴) ·ih (𝑆𝐵)) = 0)
9 normpyth 28924 . . . 4 (((𝑆𝐴) ∈ ℋ ∧ (𝑆𝐵) ∈ ℋ) → (((𝑆𝐴) ·ih (𝑆𝐵)) = 0 → ((norm‘((𝑆𝐴) + (𝑆𝐵)))↑2) = (((norm‘(𝑆𝐴))↑2) + ((norm‘(𝑆𝐵))↑2))))
1093impia 1113 . . 3 (((𝑆𝐴) ∈ ℋ ∧ (𝑆𝐵) ∈ ℋ ∧ ((𝑆𝐴) ·ih (𝑆𝐵)) = 0) → ((norm‘((𝑆𝐴) + (𝑆𝐵)))↑2) = (((norm‘(𝑆𝐴))↑2) + ((norm‘(𝑆𝐵))↑2)))
115, 7, 8, 10syl3anc 1367 . 2 (((𝑆 ∈ CHStates ∧ 𝐴C ) ∧ (𝐵C𝐴 ⊆ (⊥‘𝐵))) → ((norm‘((𝑆𝐴) + (𝑆𝐵)))↑2) = (((norm‘(𝑆𝐴))↑2) + ((norm‘(𝑆𝐵))↑2)))
123, 11eqtrd 2858 1 (((𝑆 ∈ CHStates ∧ 𝐴C ) ∧ (𝐵C𝐴 ⊆ (⊥‘𝐵))) → ((norm‘(𝑆‘(𝐴 𝐵)))↑2) = (((norm‘(𝑆𝐴))↑2) + ((norm‘(𝑆𝐵))↑2)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 398   = wceq 1537  wcel 2114  wss 3938  cfv 6357  (class class class)co 7158  0cc0 10539   + caddc 10542  2c2 11695  cexp 13432  chba 28698   + cva 28699   ·ih csp 28701  normcno 28702   C cch 28708  cort 28709   chj 28712  CHStateschst 28742
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2795  ax-sep 5205  ax-nul 5212  ax-pow 5268  ax-pr 5332  ax-un 7463  ax-cnex 10595  ax-resscn 10596  ax-1cn 10597  ax-icn 10598  ax-addcl 10599  ax-addrcl 10600  ax-mulcl 10601  ax-mulrcl 10602  ax-mulcom 10603  ax-addass 10604  ax-mulass 10605  ax-distr 10606  ax-i2m1 10607  ax-1ne0 10608  ax-1rid 10609  ax-rnegex 10610  ax-rrecex 10611  ax-cnre 10612  ax-pre-lttri 10613  ax-pre-lttrn 10614  ax-pre-ltadd 10615  ax-pre-mulgt0 10616  ax-pre-sup 10617  ax-hilex 28778  ax-hfvadd 28779  ax-hv0cl 28782  ax-hvmul0 28789  ax-hfi 28858  ax-his1 28861  ax-his2 28862  ax-his3 28863  ax-his4 28864
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2802  df-cleq 2816  df-clel 2895  df-nfc 2965  df-ne 3019  df-nel 3126  df-ral 3145  df-rex 3146  df-reu 3147  df-rmo 3148  df-rab 3149  df-v 3498  df-sbc 3775  df-csb 3886  df-dif 3941  df-un 3943  df-in 3945  df-ss 3954  df-pss 3956  df-nul 4294  df-if 4470  df-pw 4543  df-sn 4570  df-pr 4572  df-tp 4574  df-op 4576  df-uni 4841  df-iun 4923  df-br 5069  df-opab 5131  df-mpt 5149  df-tr 5175  df-id 5462  df-eprel 5467  df-po 5476  df-so 5477  df-fr 5516  df-we 5518  df-xp 5563  df-rel 5564  df-cnv 5565  df-co 5566  df-dm 5567  df-rn 5568  df-res 5569  df-ima 5570  df-pred 6150  df-ord 6196  df-on 6197  df-lim 6198  df-suc 6199  df-iota 6316  df-fun 6359  df-fn 6360  df-f 6361  df-f1 6362  df-fo 6363  df-f1o 6364  df-fv 6365  df-riota 7116  df-ov 7161  df-oprab 7162  df-mpo 7163  df-om 7583  df-2nd 7692  df-wrecs 7949  df-recs 8010  df-rdg 8048  df-er 8291  df-map 8410  df-en 8512  df-dom 8513  df-sdom 8514  df-sup 8908  df-pnf 10679  df-mnf 10680  df-xr 10681  df-ltxr 10682  df-le 10683  df-sub 10874  df-neg 10875  df-div 11300  df-nn 11641  df-2 11703  df-3 11704  df-n0 11901  df-z 11985  df-uz 12247  df-rp 12393  df-seq 13373  df-exp 13433  df-cj 14460  df-re 14461  df-im 14462  df-sqrt 14596  df-hnorm 28747  df-sh 28986  df-ch 29000  df-hst 29991
This theorem is referenced by:  hstle  30009
  Copyright terms: Public domain W3C validator