MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  htpyco1 Structured version   Visualization version   GIF version

Theorem htpyco1 22680
Description: Compose a homotopy with a continuous map. (Contributed by Mario Carneiro, 10-Mar-2015.)
Hypotheses
Ref Expression
htpyco1.n 𝑁 = (𝑥𝑋, 𝑦 ∈ (0[,]1) ↦ ((𝑃𝑥)𝐻𝑦))
htpyco1.j (𝜑𝐽 ∈ (TopOn‘𝑋))
htpyco1.p (𝜑𝑃 ∈ (𝐽 Cn 𝐾))
htpyco1.f (𝜑𝐹 ∈ (𝐾 Cn 𝐿))
htpyco1.g (𝜑𝐺 ∈ (𝐾 Cn 𝐿))
htpyco1.h (𝜑𝐻 ∈ (𝐹(𝐾 Htpy 𝐿)𝐺))
Assertion
Ref Expression
htpyco1 (𝜑𝑁 ∈ ((𝐹𝑃)(𝐽 Htpy 𝐿)(𝐺𝑃)))
Distinct variable groups:   𝑥,𝑦,𝐻   𝑥,𝐾,𝑦   𝑥,𝐿,𝑦   𝜑,𝑥,𝑦   𝑥,𝐽,𝑦   𝑥,𝑃,𝑦   𝑥,𝑋,𝑦
Allowed substitution hints:   𝐹(𝑥,𝑦)   𝐺(𝑥,𝑦)   𝑁(𝑥,𝑦)

Proof of Theorem htpyco1
Dummy variable 𝑠 is distinct from all other variables.
StepHypRef Expression
1 htpyco1.j . 2 (𝜑𝐽 ∈ (TopOn‘𝑋))
2 htpyco1.p . . 3 (𝜑𝑃 ∈ (𝐽 Cn 𝐾))
3 htpyco1.f . . 3 (𝜑𝐹 ∈ (𝐾 Cn 𝐿))
4 cnco 20975 . . 3 ((𝑃 ∈ (𝐽 Cn 𝐾) ∧ 𝐹 ∈ (𝐾 Cn 𝐿)) → (𝐹𝑃) ∈ (𝐽 Cn 𝐿))
52, 3, 4syl2anc 692 . 2 (𝜑 → (𝐹𝑃) ∈ (𝐽 Cn 𝐿))
6 htpyco1.g . . 3 (𝜑𝐺 ∈ (𝐾 Cn 𝐿))
7 cnco 20975 . . 3 ((𝑃 ∈ (𝐽 Cn 𝐾) ∧ 𝐺 ∈ (𝐾 Cn 𝐿)) → (𝐺𝑃) ∈ (𝐽 Cn 𝐿))
82, 6, 7syl2anc 692 . 2 (𝜑 → (𝐺𝑃) ∈ (𝐽 Cn 𝐿))
9 htpyco1.n . . 3 𝑁 = (𝑥𝑋, 𝑦 ∈ (0[,]1) ↦ ((𝑃𝑥)𝐻𝑦))
10 iitopon 22585 . . . . 5 II ∈ (TopOn‘(0[,]1))
1110a1i 11 . . . 4 (𝜑 → II ∈ (TopOn‘(0[,]1)))
121, 11cnmpt1st 21376 . . . . 5 (𝜑 → (𝑥𝑋, 𝑦 ∈ (0[,]1) ↦ 𝑥) ∈ ((𝐽 ×t II) Cn 𝐽))
131, 11, 12, 2cnmpt21f 21380 . . . 4 (𝜑 → (𝑥𝑋, 𝑦 ∈ (0[,]1) ↦ (𝑃𝑥)) ∈ ((𝐽 ×t II) Cn 𝐾))
141, 11cnmpt2nd 21377 . . . 4 (𝜑 → (𝑥𝑋, 𝑦 ∈ (0[,]1) ↦ 𝑦) ∈ ((𝐽 ×t II) Cn II))
15 cntop2 20950 . . . . . . . 8 (𝑃 ∈ (𝐽 Cn 𝐾) → 𝐾 ∈ Top)
162, 15syl 17 . . . . . . 7 (𝜑𝐾 ∈ Top)
17 eqid 2626 . . . . . . . 8 𝐾 = 𝐾
1817toptopon 20643 . . . . . . 7 (𝐾 ∈ Top ↔ 𝐾 ∈ (TopOn‘ 𝐾))
1916, 18sylib 208 . . . . . 6 (𝜑𝐾 ∈ (TopOn‘ 𝐾))
2019, 3, 6htpycn 22675 . . . . 5 (𝜑 → (𝐹(𝐾 Htpy 𝐿)𝐺) ⊆ ((𝐾 ×t II) Cn 𝐿))
21 htpyco1.h . . . . 5 (𝜑𝐻 ∈ (𝐹(𝐾 Htpy 𝐿)𝐺))
2220, 21sseldd 3589 . . . 4 (𝜑𝐻 ∈ ((𝐾 ×t II) Cn 𝐿))
231, 11, 13, 14, 22cnmpt22f 21383 . . 3 (𝜑 → (𝑥𝑋, 𝑦 ∈ (0[,]1) ↦ ((𝑃𝑥)𝐻𝑦)) ∈ ((𝐽 ×t II) Cn 𝐿))
249, 23syl5eqel 2708 . 2 (𝜑𝑁 ∈ ((𝐽 ×t II) Cn 𝐿))
25 cnf2 20958 . . . . . . 7 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘ 𝐾) ∧ 𝑃 ∈ (𝐽 Cn 𝐾)) → 𝑃:𝑋 𝐾)
261, 19, 2, 25syl3anc 1323 . . . . . 6 (𝜑𝑃:𝑋 𝐾)
2726ffvelrnda 6316 . . . . 5 ((𝜑𝑠𝑋) → (𝑃𝑠) ∈ 𝐾)
2819, 3, 6, 21htpyi 22676 . . . . 5 ((𝜑 ∧ (𝑃𝑠) ∈ 𝐾) → (((𝑃𝑠)𝐻0) = (𝐹‘(𝑃𝑠)) ∧ ((𝑃𝑠)𝐻1) = (𝐺‘(𝑃𝑠))))
2927, 28syldan 487 . . . 4 ((𝜑𝑠𝑋) → (((𝑃𝑠)𝐻0) = (𝐹‘(𝑃𝑠)) ∧ ((𝑃𝑠)𝐻1) = (𝐺‘(𝑃𝑠))))
3029simpld 475 . . 3 ((𝜑𝑠𝑋) → ((𝑃𝑠)𝐻0) = (𝐹‘(𝑃𝑠)))
31 simpr 477 . . . 4 ((𝜑𝑠𝑋) → 𝑠𝑋)
32 0elunit 12229 . . . 4 0 ∈ (0[,]1)
33 fveq2 6150 . . . . . 6 (𝑥 = 𝑠 → (𝑃𝑥) = (𝑃𝑠))
34 id 22 . . . . . 6 (𝑦 = 0 → 𝑦 = 0)
3533, 34oveqan12d 6624 . . . . 5 ((𝑥 = 𝑠𝑦 = 0) → ((𝑃𝑥)𝐻𝑦) = ((𝑃𝑠)𝐻0))
36 ovex 6633 . . . . 5 ((𝑃𝑠)𝐻0) ∈ V
3735, 9, 36ovmpt2a 6745 . . . 4 ((𝑠𝑋 ∧ 0 ∈ (0[,]1)) → (𝑠𝑁0) = ((𝑃𝑠)𝐻0))
3831, 32, 37sylancl 693 . . 3 ((𝜑𝑠𝑋) → (𝑠𝑁0) = ((𝑃𝑠)𝐻0))
39 fvco3 6233 . . . 4 ((𝑃:𝑋 𝐾𝑠𝑋) → ((𝐹𝑃)‘𝑠) = (𝐹‘(𝑃𝑠)))
4026, 39sylan 488 . . 3 ((𝜑𝑠𝑋) → ((𝐹𝑃)‘𝑠) = (𝐹‘(𝑃𝑠)))
4130, 38, 403eqtr4d 2670 . 2 ((𝜑𝑠𝑋) → (𝑠𝑁0) = ((𝐹𝑃)‘𝑠))
4229simprd 479 . . 3 ((𝜑𝑠𝑋) → ((𝑃𝑠)𝐻1) = (𝐺‘(𝑃𝑠)))
43 1elunit 12230 . . . 4 1 ∈ (0[,]1)
44 id 22 . . . . . 6 (𝑦 = 1 → 𝑦 = 1)
4533, 44oveqan12d 6624 . . . . 5 ((𝑥 = 𝑠𝑦 = 1) → ((𝑃𝑥)𝐻𝑦) = ((𝑃𝑠)𝐻1))
46 ovex 6633 . . . . 5 ((𝑃𝑠)𝐻1) ∈ V
4745, 9, 46ovmpt2a 6745 . . . 4 ((𝑠𝑋 ∧ 1 ∈ (0[,]1)) → (𝑠𝑁1) = ((𝑃𝑠)𝐻1))
4831, 43, 47sylancl 693 . . 3 ((𝜑𝑠𝑋) → (𝑠𝑁1) = ((𝑃𝑠)𝐻1))
49 fvco3 6233 . . . 4 ((𝑃:𝑋 𝐾𝑠𝑋) → ((𝐺𝑃)‘𝑠) = (𝐺‘(𝑃𝑠)))
5026, 49sylan 488 . . 3 ((𝜑𝑠𝑋) → ((𝐺𝑃)‘𝑠) = (𝐺‘(𝑃𝑠)))
5142, 48, 503eqtr4d 2670 . 2 ((𝜑𝑠𝑋) → (𝑠𝑁1) = ((𝐺𝑃)‘𝑠))
521, 5, 8, 24, 41, 51ishtpyd 22677 1 (𝜑𝑁 ∈ ((𝐹𝑃)(𝐽 Htpy 𝐿)(𝐺𝑃)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 384   = wceq 1480  wcel 1992   cuni 4407  ccom 5083  wf 5846  cfv 5850  (class class class)co 6605  cmpt2 6607  0cc0 9881  1c1 9882  [,]cicc 12117  Topctop 20612  TopOnctopon 20613   Cn ccn 20933   ×t ctx 21268  IIcii 22581   Htpy chtpy 22669
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1841  ax-6 1890  ax-7 1937  ax-8 1994  ax-9 2001  ax-10 2021  ax-11 2036  ax-12 2049  ax-13 2250  ax-ext 2606  ax-sep 4746  ax-nul 4754  ax-pow 4808  ax-pr 4872  ax-un 6903  ax-cnex 9937  ax-resscn 9938  ax-1cn 9939  ax-icn 9940  ax-addcl 9941  ax-addrcl 9942  ax-mulcl 9943  ax-mulrcl 9944  ax-mulcom 9945  ax-addass 9946  ax-mulass 9947  ax-distr 9948  ax-i2m1 9949  ax-1ne0 9950  ax-1rid 9951  ax-rnegex 9952  ax-rrecex 9953  ax-cnre 9954  ax-pre-lttri 9955  ax-pre-lttrn 9956  ax-pre-ltadd 9957  ax-pre-mulgt0 9958  ax-pre-sup 9959
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1037  df-3an 1038  df-tru 1483  df-ex 1702  df-nf 1707  df-sb 1883  df-eu 2478  df-mo 2479  df-clab 2613  df-cleq 2619  df-clel 2622  df-nfc 2756  df-ne 2797  df-nel 2900  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3193  df-sbc 3423  df-csb 3520  df-dif 3563  df-un 3565  df-in 3567  df-ss 3574  df-pss 3576  df-nul 3897  df-if 4064  df-pw 4137  df-sn 4154  df-pr 4156  df-tp 4158  df-op 4160  df-uni 4408  df-iun 4492  df-br 4619  df-opab 4679  df-mpt 4680  df-tr 4718  df-eprel 4990  df-id 4994  df-po 5000  df-so 5001  df-fr 5038  df-we 5040  df-xp 5085  df-rel 5086  df-cnv 5087  df-co 5088  df-dm 5089  df-rn 5090  df-res 5091  df-ima 5092  df-pred 5642  df-ord 5688  df-on 5689  df-lim 5690  df-suc 5691  df-iota 5813  df-fun 5852  df-fn 5853  df-f 5854  df-f1 5855  df-fo 5856  df-f1o 5857  df-fv 5858  df-riota 6566  df-ov 6608  df-oprab 6609  df-mpt2 6610  df-om 7014  df-1st 7116  df-2nd 7117  df-wrecs 7353  df-recs 7414  df-rdg 7452  df-er 7688  df-map 7805  df-en 7901  df-dom 7902  df-sdom 7903  df-sup 8293  df-inf 8294  df-pnf 10021  df-mnf 10022  df-xr 10023  df-ltxr 10024  df-le 10025  df-sub 10213  df-neg 10214  df-div 10630  df-nn 10966  df-2 11024  df-3 11025  df-n0 11238  df-z 11323  df-uz 11632  df-q 11733  df-rp 11777  df-xneg 11890  df-xadd 11891  df-xmul 11892  df-icc 12121  df-seq 12739  df-exp 12798  df-cj 13768  df-re 13769  df-im 13770  df-sqrt 13904  df-abs 13905  df-topgen 16020  df-psmet 19652  df-xmet 19653  df-met 19654  df-bl 19655  df-mopn 19656  df-top 20616  df-bases 20617  df-topon 20618  df-cn 20936  df-tx 21270  df-ii 22583  df-htpy 22672
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator