![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > htpyid | Structured version Visualization version GIF version |
Description: A homotopy from a function to itself. (Contributed by Mario Carneiro, 23-Feb-2015.) |
Ref | Expression |
---|---|
htpyid.1 | ⊢ 𝐺 = (𝑥 ∈ 𝑋, 𝑦 ∈ (0[,]1) ↦ (𝐹‘𝑥)) |
htpyid.2 | ⊢ (𝜑 → 𝐽 ∈ (TopOn‘𝑋)) |
htpyid.4 | ⊢ (𝜑 → 𝐹 ∈ (𝐽 Cn 𝐾)) |
Ref | Expression |
---|---|
htpyid | ⊢ (𝜑 → 𝐺 ∈ (𝐹(𝐽 Htpy 𝐾)𝐹)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | htpyid.2 | . 2 ⊢ (𝜑 → 𝐽 ∈ (TopOn‘𝑋)) | |
2 | htpyid.4 | . 2 ⊢ (𝜑 → 𝐹 ∈ (𝐽 Cn 𝐾)) | |
3 | htpyid.1 | . . 3 ⊢ 𝐺 = (𝑥 ∈ 𝑋, 𝑦 ∈ (0[,]1) ↦ (𝐹‘𝑥)) | |
4 | iitopon 22729 | . . . . 5 ⊢ II ∈ (TopOn‘(0[,]1)) | |
5 | 4 | a1i 11 | . . . 4 ⊢ (𝜑 → II ∈ (TopOn‘(0[,]1))) |
6 | 1, 5 | cnmpt1st 21519 | . . . 4 ⊢ (𝜑 → (𝑥 ∈ 𝑋, 𝑦 ∈ (0[,]1) ↦ 𝑥) ∈ ((𝐽 ×t II) Cn 𝐽)) |
7 | 1, 5, 6, 2 | cnmpt21f 21523 | . . 3 ⊢ (𝜑 → (𝑥 ∈ 𝑋, 𝑦 ∈ (0[,]1) ↦ (𝐹‘𝑥)) ∈ ((𝐽 ×t II) Cn 𝐾)) |
8 | 3, 7 | syl5eqel 2734 | . 2 ⊢ (𝜑 → 𝐺 ∈ ((𝐽 ×t II) Cn 𝐾)) |
9 | simpr 476 | . . 3 ⊢ ((𝜑 ∧ 𝑠 ∈ 𝑋) → 𝑠 ∈ 𝑋) | |
10 | 0elunit 12328 | . . 3 ⊢ 0 ∈ (0[,]1) | |
11 | fveq2 6229 | . . . 4 ⊢ (𝑥 = 𝑠 → (𝐹‘𝑥) = (𝐹‘𝑠)) | |
12 | eqidd 2652 | . . . 4 ⊢ (𝑦 = 0 → (𝐹‘𝑠) = (𝐹‘𝑠)) | |
13 | fvex 6239 | . . . 4 ⊢ (𝐹‘𝑠) ∈ V | |
14 | 11, 12, 3, 13 | ovmpt2 6838 | . . 3 ⊢ ((𝑠 ∈ 𝑋 ∧ 0 ∈ (0[,]1)) → (𝑠𝐺0) = (𝐹‘𝑠)) |
15 | 9, 10, 14 | sylancl 695 | . 2 ⊢ ((𝜑 ∧ 𝑠 ∈ 𝑋) → (𝑠𝐺0) = (𝐹‘𝑠)) |
16 | 1elunit 12329 | . . 3 ⊢ 1 ∈ (0[,]1) | |
17 | eqidd 2652 | . . . 4 ⊢ (𝑦 = 1 → (𝐹‘𝑠) = (𝐹‘𝑠)) | |
18 | 11, 17, 3, 13 | ovmpt2 6838 | . . 3 ⊢ ((𝑠 ∈ 𝑋 ∧ 1 ∈ (0[,]1)) → (𝑠𝐺1) = (𝐹‘𝑠)) |
19 | 9, 16, 18 | sylancl 695 | . 2 ⊢ ((𝜑 ∧ 𝑠 ∈ 𝑋) → (𝑠𝐺1) = (𝐹‘𝑠)) |
20 | 1, 2, 2, 8, 15, 19 | ishtpyd 22821 | 1 ⊢ (𝜑 → 𝐺 ∈ (𝐹(𝐽 Htpy 𝐾)𝐹)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 383 = wceq 1523 ∈ wcel 2030 ‘cfv 5926 (class class class)co 6690 ↦ cmpt2 6692 0cc0 9974 1c1 9975 [,]cicc 12216 TopOnctopon 20763 Cn ccn 21076 ×t ctx 21411 IIcii 22725 Htpy chtpy 22813 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1762 ax-4 1777 ax-5 1879 ax-6 1945 ax-7 1981 ax-8 2032 ax-9 2039 ax-10 2059 ax-11 2074 ax-12 2087 ax-13 2282 ax-ext 2631 ax-sep 4814 ax-nul 4822 ax-pow 4873 ax-pr 4936 ax-un 6991 ax-cnex 10030 ax-resscn 10031 ax-1cn 10032 ax-icn 10033 ax-addcl 10034 ax-addrcl 10035 ax-mulcl 10036 ax-mulrcl 10037 ax-mulcom 10038 ax-addass 10039 ax-mulass 10040 ax-distr 10041 ax-i2m1 10042 ax-1ne0 10043 ax-1rid 10044 ax-rnegex 10045 ax-rrecex 10046 ax-cnre 10047 ax-pre-lttri 10048 ax-pre-lttrn 10049 ax-pre-ltadd 10050 ax-pre-mulgt0 10051 ax-pre-sup 10052 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3or 1055 df-3an 1056 df-tru 1526 df-ex 1745 df-nf 1750 df-sb 1938 df-eu 2502 df-mo 2503 df-clab 2638 df-cleq 2644 df-clel 2647 df-nfc 2782 df-ne 2824 df-nel 2927 df-ral 2946 df-rex 2947 df-reu 2948 df-rmo 2949 df-rab 2950 df-v 3233 df-sbc 3469 df-csb 3567 df-dif 3610 df-un 3612 df-in 3614 df-ss 3621 df-pss 3623 df-nul 3949 df-if 4120 df-pw 4193 df-sn 4211 df-pr 4213 df-tp 4215 df-op 4217 df-uni 4469 df-iun 4554 df-br 4686 df-opab 4746 df-mpt 4763 df-tr 4786 df-id 5053 df-eprel 5058 df-po 5064 df-so 5065 df-fr 5102 df-we 5104 df-xp 5149 df-rel 5150 df-cnv 5151 df-co 5152 df-dm 5153 df-rn 5154 df-res 5155 df-ima 5156 df-pred 5718 df-ord 5764 df-on 5765 df-lim 5766 df-suc 5767 df-iota 5889 df-fun 5928 df-fn 5929 df-f 5930 df-f1 5931 df-fo 5932 df-f1o 5933 df-fv 5934 df-riota 6651 df-ov 6693 df-oprab 6694 df-mpt2 6695 df-om 7108 df-1st 7210 df-2nd 7211 df-wrecs 7452 df-recs 7513 df-rdg 7551 df-er 7787 df-map 7901 df-en 7998 df-dom 7999 df-sdom 8000 df-sup 8389 df-inf 8390 df-pnf 10114 df-mnf 10115 df-xr 10116 df-ltxr 10117 df-le 10118 df-sub 10306 df-neg 10307 df-div 10723 df-nn 11059 df-2 11117 df-3 11118 df-n0 11331 df-z 11416 df-uz 11726 df-q 11827 df-rp 11871 df-xneg 11984 df-xadd 11985 df-xmul 11986 df-icc 12220 df-seq 12842 df-exp 12901 df-cj 13883 df-re 13884 df-im 13885 df-sqrt 14019 df-abs 14020 df-topgen 16151 df-psmet 19786 df-xmet 19787 df-met 19788 df-bl 19789 df-mopn 19790 df-top 20747 df-topon 20764 df-bases 20798 df-cn 21079 df-tx 21413 df-ii 22727 df-htpy 22816 |
This theorem is referenced by: phtpyid 22835 |
Copyright terms: Public domain | W3C validator |