Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  htth Structured version   Visualization version   GIF version

Theorem htth 28084
 Description: Hellinger-Toeplitz Theorem: any self-adjoint linear operator defined on all of Hilbert space is bounded. Theorem 10.1-1 of [Kreyszig] p. 525. Discovered by E. Hellinger and O. Toeplitz in 1910, "it aroused both admiration and puzzlement since the theorem establishes a relation between properties of two different kinds, namely, the properties of being defined everywhere and being bounded." (Contributed by NM, 11-Jan-2008.) (Revised by Mario Carneiro, 23-Aug-2014.) (New usage is discouraged.)
Hypotheses
Ref Expression
htth.1 𝑋 = (BaseSet‘𝑈)
htth.2 𝑃 = (·𝑖OLD𝑈)
htth.3 𝐿 = (𝑈 LnOp 𝑈)
htth.4 𝐵 = (𝑈 BLnOp 𝑈)
Assertion
Ref Expression
htth ((𝑈 ∈ CHilOLD𝑇𝐿 ∧ ∀𝑥𝑋𝑦𝑋 (𝑥𝑃(𝑇𝑦)) = ((𝑇𝑥)𝑃𝑦)) → 𝑇𝐵)
Distinct variable groups:   𝑥,𝑦,𝑇   𝑥,𝑈,𝑦   𝑥,𝑋,𝑦
Allowed substitution hints:   𝐵(𝑥,𝑦)   𝑃(𝑥,𝑦)   𝐿(𝑥,𝑦)

Proof of Theorem htth
Dummy variables 𝑤 𝑧 𝑣 𝑢 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 htth.3 . . . . . . 7 𝐿 = (𝑈 LnOp 𝑈)
2 oveq12 6822 . . . . . . . 8 ((𝑈 = if(𝑈 ∈ CHilOLD, 𝑈, ⟨⟨ + , · ⟩, abs⟩) ∧ 𝑈 = if(𝑈 ∈ CHilOLD, 𝑈, ⟨⟨ + , · ⟩, abs⟩)) → (𝑈 LnOp 𝑈) = (if(𝑈 ∈ CHilOLD, 𝑈, ⟨⟨ + , · ⟩, abs⟩) LnOp if(𝑈 ∈ CHilOLD, 𝑈, ⟨⟨ + , · ⟩, abs⟩)))
32anidms 680 . . . . . . 7 (𝑈 = if(𝑈 ∈ CHilOLD, 𝑈, ⟨⟨ + , · ⟩, abs⟩) → (𝑈 LnOp 𝑈) = (if(𝑈 ∈ CHilOLD, 𝑈, ⟨⟨ + , · ⟩, abs⟩) LnOp if(𝑈 ∈ CHilOLD, 𝑈, ⟨⟨ + , · ⟩, abs⟩)))
41, 3syl5eq 2806 . . . . . 6 (𝑈 = if(𝑈 ∈ CHilOLD, 𝑈, ⟨⟨ + , · ⟩, abs⟩) → 𝐿 = (if(𝑈 ∈ CHilOLD, 𝑈, ⟨⟨ + , · ⟩, abs⟩) LnOp if(𝑈 ∈ CHilOLD, 𝑈, ⟨⟨ + , · ⟩, abs⟩)))
54eleq2d 2825 . . . . 5 (𝑈 = if(𝑈 ∈ CHilOLD, 𝑈, ⟨⟨ + , · ⟩, abs⟩) → (𝑇𝐿𝑇 ∈ (if(𝑈 ∈ CHilOLD, 𝑈, ⟨⟨ + , · ⟩, abs⟩) LnOp if(𝑈 ∈ CHilOLD, 𝑈, ⟨⟨ + , · ⟩, abs⟩))))
6 htth.1 . . . . . . 7 𝑋 = (BaseSet‘𝑈)
7 fveq2 6352 . . . . . . 7 (𝑈 = if(𝑈 ∈ CHilOLD, 𝑈, ⟨⟨ + , · ⟩, abs⟩) → (BaseSet‘𝑈) = (BaseSet‘if(𝑈 ∈ CHilOLD, 𝑈, ⟨⟨ + , · ⟩, abs⟩)))
86, 7syl5eq 2806 . . . . . 6 (𝑈 = if(𝑈 ∈ CHilOLD, 𝑈, ⟨⟨ + , · ⟩, abs⟩) → 𝑋 = (BaseSet‘if(𝑈 ∈ CHilOLD, 𝑈, ⟨⟨ + , · ⟩, abs⟩)))
9 htth.2 . . . . . . . . . 10 𝑃 = (·𝑖OLD𝑈)
10 fveq2 6352 . . . . . . . . . 10 (𝑈 = if(𝑈 ∈ CHilOLD, 𝑈, ⟨⟨ + , · ⟩, abs⟩) → (·𝑖OLD𝑈) = (·𝑖OLD‘if(𝑈 ∈ CHilOLD, 𝑈, ⟨⟨ + , · ⟩, abs⟩)))
119, 10syl5eq 2806 . . . . . . . . 9 (𝑈 = if(𝑈 ∈ CHilOLD, 𝑈, ⟨⟨ + , · ⟩, abs⟩) → 𝑃 = (·𝑖OLD‘if(𝑈 ∈ CHilOLD, 𝑈, ⟨⟨ + , · ⟩, abs⟩)))
1211oveqd 6830 . . . . . . . 8 (𝑈 = if(𝑈 ∈ CHilOLD, 𝑈, ⟨⟨ + , · ⟩, abs⟩) → (𝑥𝑃(𝑇𝑦)) = (𝑥(·𝑖OLD‘if(𝑈 ∈ CHilOLD, 𝑈, ⟨⟨ + , · ⟩, abs⟩))(𝑇𝑦)))
1311oveqd 6830 . . . . . . . 8 (𝑈 = if(𝑈 ∈ CHilOLD, 𝑈, ⟨⟨ + , · ⟩, abs⟩) → ((𝑇𝑥)𝑃𝑦) = ((𝑇𝑥)(·𝑖OLD‘if(𝑈 ∈ CHilOLD, 𝑈, ⟨⟨ + , · ⟩, abs⟩))𝑦))
1412, 13eqeq12d 2775 . . . . . . 7 (𝑈 = if(𝑈 ∈ CHilOLD, 𝑈, ⟨⟨ + , · ⟩, abs⟩) → ((𝑥𝑃(𝑇𝑦)) = ((𝑇𝑥)𝑃𝑦) ↔ (𝑥(·𝑖OLD‘if(𝑈 ∈ CHilOLD, 𝑈, ⟨⟨ + , · ⟩, abs⟩))(𝑇𝑦)) = ((𝑇𝑥)(·𝑖OLD‘if(𝑈 ∈ CHilOLD, 𝑈, ⟨⟨ + , · ⟩, abs⟩))𝑦)))
158, 14raleqbidv 3291 . . . . . 6 (𝑈 = if(𝑈 ∈ CHilOLD, 𝑈, ⟨⟨ + , · ⟩, abs⟩) → (∀𝑦𝑋 (𝑥𝑃(𝑇𝑦)) = ((𝑇𝑥)𝑃𝑦) ↔ ∀𝑦 ∈ (BaseSet‘if(𝑈 ∈ CHilOLD, 𝑈, ⟨⟨ + , · ⟩, abs⟩))(𝑥(·𝑖OLD‘if(𝑈 ∈ CHilOLD, 𝑈, ⟨⟨ + , · ⟩, abs⟩))(𝑇𝑦)) = ((𝑇𝑥)(·𝑖OLD‘if(𝑈 ∈ CHilOLD, 𝑈, ⟨⟨ + , · ⟩, abs⟩))𝑦)))
168, 15raleqbidv 3291 . . . . 5 (𝑈 = if(𝑈 ∈ CHilOLD, 𝑈, ⟨⟨ + , · ⟩, abs⟩) → (∀𝑥𝑋𝑦𝑋 (𝑥𝑃(𝑇𝑦)) = ((𝑇𝑥)𝑃𝑦) ↔ ∀𝑥 ∈ (BaseSet‘if(𝑈 ∈ CHilOLD, 𝑈, ⟨⟨ + , · ⟩, abs⟩))∀𝑦 ∈ (BaseSet‘if(𝑈 ∈ CHilOLD, 𝑈, ⟨⟨ + , · ⟩, abs⟩))(𝑥(·𝑖OLD‘if(𝑈 ∈ CHilOLD, 𝑈, ⟨⟨ + , · ⟩, abs⟩))(𝑇𝑦)) = ((𝑇𝑥)(·𝑖OLD‘if(𝑈 ∈ CHilOLD, 𝑈, ⟨⟨ + , · ⟩, abs⟩))𝑦)))
175, 16anbi12d 749 . . . 4 (𝑈 = if(𝑈 ∈ CHilOLD, 𝑈, ⟨⟨ + , · ⟩, abs⟩) → ((𝑇𝐿 ∧ ∀𝑥𝑋𝑦𝑋 (𝑥𝑃(𝑇𝑦)) = ((𝑇𝑥)𝑃𝑦)) ↔ (𝑇 ∈ (if(𝑈 ∈ CHilOLD, 𝑈, ⟨⟨ + , · ⟩, abs⟩) LnOp if(𝑈 ∈ CHilOLD, 𝑈, ⟨⟨ + , · ⟩, abs⟩)) ∧ ∀𝑥 ∈ (BaseSet‘if(𝑈 ∈ CHilOLD, 𝑈, ⟨⟨ + , · ⟩, abs⟩))∀𝑦 ∈ (BaseSet‘if(𝑈 ∈ CHilOLD, 𝑈, ⟨⟨ + , · ⟩, abs⟩))(𝑥(·𝑖OLD‘if(𝑈 ∈ CHilOLD, 𝑈, ⟨⟨ + , · ⟩, abs⟩))(𝑇𝑦)) = ((𝑇𝑥)(·𝑖OLD‘if(𝑈 ∈ CHilOLD, 𝑈, ⟨⟨ + , · ⟩, abs⟩))𝑦))))
18 htth.4 . . . . . 6 𝐵 = (𝑈 BLnOp 𝑈)
19 oveq12 6822 . . . . . . 7 ((𝑈 = if(𝑈 ∈ CHilOLD, 𝑈, ⟨⟨ + , · ⟩, abs⟩) ∧ 𝑈 = if(𝑈 ∈ CHilOLD, 𝑈, ⟨⟨ + , · ⟩, abs⟩)) → (𝑈 BLnOp 𝑈) = (if(𝑈 ∈ CHilOLD, 𝑈, ⟨⟨ + , · ⟩, abs⟩) BLnOp if(𝑈 ∈ CHilOLD, 𝑈, ⟨⟨ + , · ⟩, abs⟩)))
2019anidms 680 . . . . . 6 (𝑈 = if(𝑈 ∈ CHilOLD, 𝑈, ⟨⟨ + , · ⟩, abs⟩) → (𝑈 BLnOp 𝑈) = (if(𝑈 ∈ CHilOLD, 𝑈, ⟨⟨ + , · ⟩, abs⟩) BLnOp if(𝑈 ∈ CHilOLD, 𝑈, ⟨⟨ + , · ⟩, abs⟩)))
2118, 20syl5eq 2806 . . . . 5 (𝑈 = if(𝑈 ∈ CHilOLD, 𝑈, ⟨⟨ + , · ⟩, abs⟩) → 𝐵 = (if(𝑈 ∈ CHilOLD, 𝑈, ⟨⟨ + , · ⟩, abs⟩) BLnOp if(𝑈 ∈ CHilOLD, 𝑈, ⟨⟨ + , · ⟩, abs⟩)))
2221eleq2d 2825 . . . 4 (𝑈 = if(𝑈 ∈ CHilOLD, 𝑈, ⟨⟨ + , · ⟩, abs⟩) → (𝑇𝐵𝑇 ∈ (if(𝑈 ∈ CHilOLD, 𝑈, ⟨⟨ + , · ⟩, abs⟩) BLnOp if(𝑈 ∈ CHilOLD, 𝑈, ⟨⟨ + , · ⟩, abs⟩))))
2317, 22imbi12d 333 . . 3 (𝑈 = if(𝑈 ∈ CHilOLD, 𝑈, ⟨⟨ + , · ⟩, abs⟩) → (((𝑇𝐿 ∧ ∀𝑥𝑋𝑦𝑋 (𝑥𝑃(𝑇𝑦)) = ((𝑇𝑥)𝑃𝑦)) → 𝑇𝐵) ↔ ((𝑇 ∈ (if(𝑈 ∈ CHilOLD, 𝑈, ⟨⟨ + , · ⟩, abs⟩) LnOp if(𝑈 ∈ CHilOLD, 𝑈, ⟨⟨ + , · ⟩, abs⟩)) ∧ ∀𝑥 ∈ (BaseSet‘if(𝑈 ∈ CHilOLD, 𝑈, ⟨⟨ + , · ⟩, abs⟩))∀𝑦 ∈ (BaseSet‘if(𝑈 ∈ CHilOLD, 𝑈, ⟨⟨ + , · ⟩, abs⟩))(𝑥(·𝑖OLD‘if(𝑈 ∈ CHilOLD, 𝑈, ⟨⟨ + , · ⟩, abs⟩))(𝑇𝑦)) = ((𝑇𝑥)(·𝑖OLD‘if(𝑈 ∈ CHilOLD, 𝑈, ⟨⟨ + , · ⟩, abs⟩))𝑦)) → 𝑇 ∈ (if(𝑈 ∈ CHilOLD, 𝑈, ⟨⟨ + , · ⟩, abs⟩) BLnOp if(𝑈 ∈ CHilOLD, 𝑈, ⟨⟨ + , · ⟩, abs⟩)))))
24 eqid 2760 . . . 4 (BaseSet‘if(𝑈 ∈ CHilOLD, 𝑈, ⟨⟨ + , · ⟩, abs⟩)) = (BaseSet‘if(𝑈 ∈ CHilOLD, 𝑈, ⟨⟨ + , · ⟩, abs⟩))
25 eqid 2760 . . . 4 (·𝑖OLD‘if(𝑈 ∈ CHilOLD, 𝑈, ⟨⟨ + , · ⟩, abs⟩)) = (·𝑖OLD‘if(𝑈 ∈ CHilOLD, 𝑈, ⟨⟨ + , · ⟩, abs⟩))
26 eqid 2760 . . . 4 (if(𝑈 ∈ CHilOLD, 𝑈, ⟨⟨ + , · ⟩, abs⟩) LnOp if(𝑈 ∈ CHilOLD, 𝑈, ⟨⟨ + , · ⟩, abs⟩)) = (if(𝑈 ∈ CHilOLD, 𝑈, ⟨⟨ + , · ⟩, abs⟩) LnOp if(𝑈 ∈ CHilOLD, 𝑈, ⟨⟨ + , · ⟩, abs⟩))
27 eqid 2760 . . . 4 (if(𝑈 ∈ CHilOLD, 𝑈, ⟨⟨ + , · ⟩, abs⟩) BLnOp if(𝑈 ∈ CHilOLD, 𝑈, ⟨⟨ + , · ⟩, abs⟩)) = (if(𝑈 ∈ CHilOLD, 𝑈, ⟨⟨ + , · ⟩, abs⟩) BLnOp if(𝑈 ∈ CHilOLD, 𝑈, ⟨⟨ + , · ⟩, abs⟩))
28 eqid 2760 . . . 4 (normCV‘if(𝑈 ∈ CHilOLD, 𝑈, ⟨⟨ + , · ⟩, abs⟩)) = (normCV‘if(𝑈 ∈ CHilOLD, 𝑈, ⟨⟨ + , · ⟩, abs⟩))
29 eqid 2760 . . . . . 6 ⟨⟨ + , · ⟩, abs⟩ = ⟨⟨ + , · ⟩, abs⟩
3029cnchl 28081 . . . . 5 ⟨⟨ + , · ⟩, abs⟩ ∈ CHilOLD
3130elimel 4294 . . . 4 if(𝑈 ∈ CHilOLD, 𝑈, ⟨⟨ + , · ⟩, abs⟩) ∈ CHilOLD
32 simpl 474 . . . 4 ((𝑇 ∈ (if(𝑈 ∈ CHilOLD, 𝑈, ⟨⟨ + , · ⟩, abs⟩) LnOp if(𝑈 ∈ CHilOLD, 𝑈, ⟨⟨ + , · ⟩, abs⟩)) ∧ ∀𝑥 ∈ (BaseSet‘if(𝑈 ∈ CHilOLD, 𝑈, ⟨⟨ + , · ⟩, abs⟩))∀𝑦 ∈ (BaseSet‘if(𝑈 ∈ CHilOLD, 𝑈, ⟨⟨ + , · ⟩, abs⟩))(𝑥(·𝑖OLD‘if(𝑈 ∈ CHilOLD, 𝑈, ⟨⟨ + , · ⟩, abs⟩))(𝑇𝑦)) = ((𝑇𝑥)(·𝑖OLD‘if(𝑈 ∈ CHilOLD, 𝑈, ⟨⟨ + , · ⟩, abs⟩))𝑦)) → 𝑇 ∈ (if(𝑈 ∈ CHilOLD, 𝑈, ⟨⟨ + , · ⟩, abs⟩) LnOp if(𝑈 ∈ CHilOLD, 𝑈, ⟨⟨ + , · ⟩, abs⟩)))
33 simpr 479 . . . . 5 ((𝑇 ∈ (if(𝑈 ∈ CHilOLD, 𝑈, ⟨⟨ + , · ⟩, abs⟩) LnOp if(𝑈 ∈ CHilOLD, 𝑈, ⟨⟨ + , · ⟩, abs⟩)) ∧ ∀𝑥 ∈ (BaseSet‘if(𝑈 ∈ CHilOLD, 𝑈, ⟨⟨ + , · ⟩, abs⟩))∀𝑦 ∈ (BaseSet‘if(𝑈 ∈ CHilOLD, 𝑈, ⟨⟨ + , · ⟩, abs⟩))(𝑥(·𝑖OLD‘if(𝑈 ∈ CHilOLD, 𝑈, ⟨⟨ + , · ⟩, abs⟩))(𝑇𝑦)) = ((𝑇𝑥)(·𝑖OLD‘if(𝑈 ∈ CHilOLD, 𝑈, ⟨⟨ + , · ⟩, abs⟩))𝑦)) → ∀𝑥 ∈ (BaseSet‘if(𝑈 ∈ CHilOLD, 𝑈, ⟨⟨ + , · ⟩, abs⟩))∀𝑦 ∈ (BaseSet‘if(𝑈 ∈ CHilOLD, 𝑈, ⟨⟨ + , · ⟩, abs⟩))(𝑥(·𝑖OLD‘if(𝑈 ∈ CHilOLD, 𝑈, ⟨⟨ + , · ⟩, abs⟩))(𝑇𝑦)) = ((𝑇𝑥)(·𝑖OLD‘if(𝑈 ∈ CHilOLD, 𝑈, ⟨⟨ + , · ⟩, abs⟩))𝑦))
34 oveq1 6820 . . . . . . 7 (𝑥 = 𝑢 → (𝑥(·𝑖OLD‘if(𝑈 ∈ CHilOLD, 𝑈, ⟨⟨ + , · ⟩, abs⟩))(𝑇𝑦)) = (𝑢(·𝑖OLD‘if(𝑈 ∈ CHilOLD, 𝑈, ⟨⟨ + , · ⟩, abs⟩))(𝑇𝑦)))
35 fveq2 6352 . . . . . . . 8 (𝑥 = 𝑢 → (𝑇𝑥) = (𝑇𝑢))
3635oveq1d 6828 . . . . . . 7 (𝑥 = 𝑢 → ((𝑇𝑥)(·𝑖OLD‘if(𝑈 ∈ CHilOLD, 𝑈, ⟨⟨ + , · ⟩, abs⟩))𝑦) = ((𝑇𝑢)(·𝑖OLD‘if(𝑈 ∈ CHilOLD, 𝑈, ⟨⟨ + , · ⟩, abs⟩))𝑦))
3734, 36eqeq12d 2775 . . . . . 6 (𝑥 = 𝑢 → ((𝑥(·𝑖OLD‘if(𝑈 ∈ CHilOLD, 𝑈, ⟨⟨ + , · ⟩, abs⟩))(𝑇𝑦)) = ((𝑇𝑥)(·𝑖OLD‘if(𝑈 ∈ CHilOLD, 𝑈, ⟨⟨ + , · ⟩, abs⟩))𝑦) ↔ (𝑢(·𝑖OLD‘if(𝑈 ∈ CHilOLD, 𝑈, ⟨⟨ + , · ⟩, abs⟩))(𝑇𝑦)) = ((𝑇𝑢)(·𝑖OLD‘if(𝑈 ∈ CHilOLD, 𝑈, ⟨⟨ + , · ⟩, abs⟩))𝑦)))
38 fveq2 6352 . . . . . . . 8 (𝑦 = 𝑣 → (𝑇𝑦) = (𝑇𝑣))
3938oveq2d 6829 . . . . . . 7 (𝑦 = 𝑣 → (𝑢(·𝑖OLD‘if(𝑈 ∈ CHilOLD, 𝑈, ⟨⟨ + , · ⟩, abs⟩))(𝑇𝑦)) = (𝑢(·𝑖OLD‘if(𝑈 ∈ CHilOLD, 𝑈, ⟨⟨ + , · ⟩, abs⟩))(𝑇𝑣)))
40 oveq2 6821 . . . . . . 7 (𝑦 = 𝑣 → ((𝑇𝑢)(·𝑖OLD‘if(𝑈 ∈ CHilOLD, 𝑈, ⟨⟨ + , · ⟩, abs⟩))𝑦) = ((𝑇𝑢)(·𝑖OLD‘if(𝑈 ∈ CHilOLD, 𝑈, ⟨⟨ + , · ⟩, abs⟩))𝑣))
4139, 40eqeq12d 2775 . . . . . 6 (𝑦 = 𝑣 → ((𝑢(·𝑖OLD‘if(𝑈 ∈ CHilOLD, 𝑈, ⟨⟨ + , · ⟩, abs⟩))(𝑇𝑦)) = ((𝑇𝑢)(·𝑖OLD‘if(𝑈 ∈ CHilOLD, 𝑈, ⟨⟨ + , · ⟩, abs⟩))𝑦) ↔ (𝑢(·𝑖OLD‘if(𝑈 ∈ CHilOLD, 𝑈, ⟨⟨ + , · ⟩, abs⟩))(𝑇𝑣)) = ((𝑇𝑢)(·𝑖OLD‘if(𝑈 ∈ CHilOLD, 𝑈, ⟨⟨ + , · ⟩, abs⟩))𝑣)))
4237, 41cbvral2v 3318 . . . . 5 (∀𝑥 ∈ (BaseSet‘if(𝑈 ∈ CHilOLD, 𝑈, ⟨⟨ + , · ⟩, abs⟩))∀𝑦 ∈ (BaseSet‘if(𝑈 ∈ CHilOLD, 𝑈, ⟨⟨ + , · ⟩, abs⟩))(𝑥(·𝑖OLD‘if(𝑈 ∈ CHilOLD, 𝑈, ⟨⟨ + , · ⟩, abs⟩))(𝑇𝑦)) = ((𝑇𝑥)(·𝑖OLD‘if(𝑈 ∈ CHilOLD, 𝑈, ⟨⟨ + , · ⟩, abs⟩))𝑦) ↔ ∀𝑢 ∈ (BaseSet‘if(𝑈 ∈ CHilOLD, 𝑈, ⟨⟨ + , · ⟩, abs⟩))∀𝑣 ∈ (BaseSet‘if(𝑈 ∈ CHilOLD, 𝑈, ⟨⟨ + , · ⟩, abs⟩))(𝑢(·𝑖OLD‘if(𝑈 ∈ CHilOLD, 𝑈, ⟨⟨ + , · ⟩, abs⟩))(𝑇𝑣)) = ((𝑇𝑢)(·𝑖OLD‘if(𝑈 ∈ CHilOLD, 𝑈, ⟨⟨ + , · ⟩, abs⟩))𝑣))
4333, 42sylib 208 . . . 4 ((𝑇 ∈ (if(𝑈 ∈ CHilOLD, 𝑈, ⟨⟨ + , · ⟩, abs⟩) LnOp if(𝑈 ∈ CHilOLD, 𝑈, ⟨⟨ + , · ⟩, abs⟩)) ∧ ∀𝑥 ∈ (BaseSet‘if(𝑈 ∈ CHilOLD, 𝑈, ⟨⟨ + , · ⟩, abs⟩))∀𝑦 ∈ (BaseSet‘if(𝑈 ∈ CHilOLD, 𝑈, ⟨⟨ + , · ⟩, abs⟩))(𝑥(·𝑖OLD‘if(𝑈 ∈ CHilOLD, 𝑈, ⟨⟨ + , · ⟩, abs⟩))(𝑇𝑦)) = ((𝑇𝑥)(·𝑖OLD‘if(𝑈 ∈ CHilOLD, 𝑈, ⟨⟨ + , · ⟩, abs⟩))𝑦)) → ∀𝑢 ∈ (BaseSet‘if(𝑈 ∈ CHilOLD, 𝑈, ⟨⟨ + , · ⟩, abs⟩))∀𝑣 ∈ (BaseSet‘if(𝑈 ∈ CHilOLD, 𝑈, ⟨⟨ + , · ⟩, abs⟩))(𝑢(·𝑖OLD‘if(𝑈 ∈ CHilOLD, 𝑈, ⟨⟨ + , · ⟩, abs⟩))(𝑇𝑣)) = ((𝑇𝑢)(·𝑖OLD‘if(𝑈 ∈ CHilOLD, 𝑈, ⟨⟨ + , · ⟩, abs⟩))𝑣))
44 oveq1 6820 . . . . . . 7 (𝑦 = 𝑤 → (𝑦(·𝑖OLD‘if(𝑈 ∈ CHilOLD, 𝑈, ⟨⟨ + , · ⟩, abs⟩))(𝑇𝑥)) = (𝑤(·𝑖OLD‘if(𝑈 ∈ CHilOLD, 𝑈, ⟨⟨ + , · ⟩, abs⟩))(𝑇𝑥)))
4544cbvmptv 4902 . . . . . 6 (𝑦 ∈ (BaseSet‘if(𝑈 ∈ CHilOLD, 𝑈, ⟨⟨ + , · ⟩, abs⟩)) ↦ (𝑦(·𝑖OLD‘if(𝑈 ∈ CHilOLD, 𝑈, ⟨⟨ + , · ⟩, abs⟩))(𝑇𝑥))) = (𝑤 ∈ (BaseSet‘if(𝑈 ∈ CHilOLD, 𝑈, ⟨⟨ + , · ⟩, abs⟩)) ↦ (𝑤(·𝑖OLD‘if(𝑈 ∈ CHilOLD, 𝑈, ⟨⟨ + , · ⟩, abs⟩))(𝑇𝑥)))
46 fveq2 6352 . . . . . . . 8 (𝑥 = 𝑧 → (𝑇𝑥) = (𝑇𝑧))
4746oveq2d 6829 . . . . . . 7 (𝑥 = 𝑧 → (𝑤(·𝑖OLD‘if(𝑈 ∈ CHilOLD, 𝑈, ⟨⟨ + , · ⟩, abs⟩))(𝑇𝑥)) = (𝑤(·𝑖OLD‘if(𝑈 ∈ CHilOLD, 𝑈, ⟨⟨ + , · ⟩, abs⟩))(𝑇𝑧)))
4847mpteq2dv 4897 . . . . . 6 (𝑥 = 𝑧 → (𝑤 ∈ (BaseSet‘if(𝑈 ∈ CHilOLD, 𝑈, ⟨⟨ + , · ⟩, abs⟩)) ↦ (𝑤(·𝑖OLD‘if(𝑈 ∈ CHilOLD, 𝑈, ⟨⟨ + , · ⟩, abs⟩))(𝑇𝑥))) = (𝑤 ∈ (BaseSet‘if(𝑈 ∈ CHilOLD, 𝑈, ⟨⟨ + , · ⟩, abs⟩)) ↦ (𝑤(·𝑖OLD‘if(𝑈 ∈ CHilOLD, 𝑈, ⟨⟨ + , · ⟩, abs⟩))(𝑇𝑧))))
4945, 48syl5eq 2806 . . . . 5 (𝑥 = 𝑧 → (𝑦 ∈ (BaseSet‘if(𝑈 ∈ CHilOLD, 𝑈, ⟨⟨ + , · ⟩, abs⟩)) ↦ (𝑦(·𝑖OLD‘if(𝑈 ∈ CHilOLD, 𝑈, ⟨⟨ + , · ⟩, abs⟩))(𝑇𝑥))) = (𝑤 ∈ (BaseSet‘if(𝑈 ∈ CHilOLD, 𝑈, ⟨⟨ + , · ⟩, abs⟩)) ↦ (𝑤(·𝑖OLD‘if(𝑈 ∈ CHilOLD, 𝑈, ⟨⟨ + , · ⟩, abs⟩))(𝑇𝑧))))
5049cbvmptv 4902 . . . 4 (𝑥 ∈ (BaseSet‘if(𝑈 ∈ CHilOLD, 𝑈, ⟨⟨ + , · ⟩, abs⟩)) ↦ (𝑦 ∈ (BaseSet‘if(𝑈 ∈ CHilOLD, 𝑈, ⟨⟨ + , · ⟩, abs⟩)) ↦ (𝑦(·𝑖OLD‘if(𝑈 ∈ CHilOLD, 𝑈, ⟨⟨ + , · ⟩, abs⟩))(𝑇𝑥)))) = (𝑧 ∈ (BaseSet‘if(𝑈 ∈ CHilOLD, 𝑈, ⟨⟨ + , · ⟩, abs⟩)) ↦ (𝑤 ∈ (BaseSet‘if(𝑈 ∈ CHilOLD, 𝑈, ⟨⟨ + , · ⟩, abs⟩)) ↦ (𝑤(·𝑖OLD‘if(𝑈 ∈ CHilOLD, 𝑈, ⟨⟨ + , · ⟩, abs⟩))(𝑇𝑧))))
51 fveq2 6352 . . . . . . 7 (𝑥 = 𝑧 → ((normCV‘if(𝑈 ∈ CHilOLD, 𝑈, ⟨⟨ + , · ⟩, abs⟩))‘𝑥) = ((normCV‘if(𝑈 ∈ CHilOLD, 𝑈, ⟨⟨ + , · ⟩, abs⟩))‘𝑧))
5251breq1d 4814 . . . . . 6 (𝑥 = 𝑧 → (((normCV‘if(𝑈 ∈ CHilOLD, 𝑈, ⟨⟨ + , · ⟩, abs⟩))‘𝑥) ≤ 1 ↔ ((normCV‘if(𝑈 ∈ CHilOLD, 𝑈, ⟨⟨ + , · ⟩, abs⟩))‘𝑧) ≤ 1))
5352cbvrabv 3339 . . . . 5 {𝑥 ∈ (BaseSet‘if(𝑈 ∈ CHilOLD, 𝑈, ⟨⟨ + , · ⟩, abs⟩)) ∣ ((normCV‘if(𝑈 ∈ CHilOLD, 𝑈, ⟨⟨ + , · ⟩, abs⟩))‘𝑥) ≤ 1} = {𝑧 ∈ (BaseSet‘if(𝑈 ∈ CHilOLD, 𝑈, ⟨⟨ + , · ⟩, abs⟩)) ∣ ((normCV‘if(𝑈 ∈ CHilOLD, 𝑈, ⟨⟨ + , · ⟩, abs⟩))‘𝑧) ≤ 1}
5453imaeq2i 5622 . . . 4 ((𝑥 ∈ (BaseSet‘if(𝑈 ∈ CHilOLD, 𝑈, ⟨⟨ + , · ⟩, abs⟩)) ↦ (𝑦 ∈ (BaseSet‘if(𝑈 ∈ CHilOLD, 𝑈, ⟨⟨ + , · ⟩, abs⟩)) ↦ (𝑦(·𝑖OLD‘if(𝑈 ∈ CHilOLD, 𝑈, ⟨⟨ + , · ⟩, abs⟩))(𝑇𝑥)))) “ {𝑥 ∈ (BaseSet‘if(𝑈 ∈ CHilOLD, 𝑈, ⟨⟨ + , · ⟩, abs⟩)) ∣ ((normCV‘if(𝑈 ∈ CHilOLD, 𝑈, ⟨⟨ + , · ⟩, abs⟩))‘𝑥) ≤ 1}) = ((𝑥 ∈ (BaseSet‘if(𝑈 ∈ CHilOLD, 𝑈, ⟨⟨ + , · ⟩, abs⟩)) ↦ (𝑦 ∈ (BaseSet‘if(𝑈 ∈ CHilOLD, 𝑈, ⟨⟨ + , · ⟩, abs⟩)) ↦ (𝑦(·𝑖OLD‘if(𝑈 ∈ CHilOLD, 𝑈, ⟨⟨ + , · ⟩, abs⟩))(𝑇𝑥)))) “ {𝑧 ∈ (BaseSet‘if(𝑈 ∈ CHilOLD, 𝑈, ⟨⟨ + , · ⟩, abs⟩)) ∣ ((normCV‘if(𝑈 ∈ CHilOLD, 𝑈, ⟨⟨ + , · ⟩, abs⟩))‘𝑧) ≤ 1})
5524, 25, 26, 27, 28, 31, 29, 32, 43, 50, 54htthlem 28083 . . 3 ((𝑇 ∈ (if(𝑈 ∈ CHilOLD, 𝑈, ⟨⟨ + , · ⟩, abs⟩) LnOp if(𝑈 ∈ CHilOLD, 𝑈, ⟨⟨ + , · ⟩, abs⟩)) ∧ ∀𝑥 ∈ (BaseSet‘if(𝑈 ∈ CHilOLD, 𝑈, ⟨⟨ + , · ⟩, abs⟩))∀𝑦 ∈ (BaseSet‘if(𝑈 ∈ CHilOLD, 𝑈, ⟨⟨ + , · ⟩, abs⟩))(𝑥(·𝑖OLD‘if(𝑈 ∈ CHilOLD, 𝑈, ⟨⟨ + , · ⟩, abs⟩))(𝑇𝑦)) = ((𝑇𝑥)(·𝑖OLD‘if(𝑈 ∈ CHilOLD, 𝑈, ⟨⟨ + , · ⟩, abs⟩))𝑦)) → 𝑇 ∈ (if(𝑈 ∈ CHilOLD, 𝑈, ⟨⟨ + , · ⟩, abs⟩) BLnOp if(𝑈 ∈ CHilOLD, 𝑈, ⟨⟨ + , · ⟩, abs⟩)))
5623, 55dedth 4283 . 2 (𝑈 ∈ CHilOLD → ((𝑇𝐿 ∧ ∀𝑥𝑋𝑦𝑋 (𝑥𝑃(𝑇𝑦)) = ((𝑇𝑥)𝑃𝑦)) → 𝑇𝐵))
57563impib 1109 1 ((𝑈 ∈ CHilOLD𝑇𝐿 ∧ ∀𝑥𝑋𝑦𝑋 (𝑥𝑃(𝑇𝑦)) = ((𝑇𝑥)𝑃𝑦)) → 𝑇𝐵)
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ∧ wa 383   ∧ w3a 1072   = wceq 1632   ∈ wcel 2139  ∀wral 3050  {crab 3054  ifcif 4230  ⟨cop 4327   class class class wbr 4804   ↦ cmpt 4881   “ cima 5269  ‘cfv 6049  (class class class)co 6813  1c1 10129   + caddc 10131   · cmul 10133   ≤ cle 10267  abscabs 14173  BaseSetcba 27750  normCVcnmcv 27754  ·𝑖OLDcdip 27864   LnOp clno 27904   BLnOp cblo 27906  CHilOLDchlo 28050 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1871  ax-4 1886  ax-5 1988  ax-6 2054  ax-7 2090  ax-8 2141  ax-9 2148  ax-10 2168  ax-11 2183  ax-12 2196  ax-13 2391  ax-ext 2740  ax-rep 4923  ax-sep 4933  ax-nul 4941  ax-pow 4992  ax-pr 5055  ax-un 7114  ax-inf2 8711  ax-dc 9460  ax-cnex 10184  ax-resscn 10185  ax-1cn 10186  ax-icn 10187  ax-addcl 10188  ax-addrcl 10189  ax-mulcl 10190  ax-mulrcl 10191  ax-mulcom 10192  ax-addass 10193  ax-mulass 10194  ax-distr 10195  ax-i2m1 10196  ax-1ne0 10197  ax-1rid 10198  ax-rnegex 10199  ax-rrecex 10200  ax-cnre 10201  ax-pre-lttri 10202  ax-pre-lttrn 10203  ax-pre-ltadd 10204  ax-pre-mulgt0 10205  ax-pre-sup 10206  ax-addf 10207  ax-mulf 10208 This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1073  df-3an 1074  df-tru 1635  df-fal 1638  df-ex 1854  df-nf 1859  df-sb 2047  df-eu 2611  df-mo 2612  df-clab 2747  df-cleq 2753  df-clel 2756  df-nfc 2891  df-ne 2933  df-nel 3036  df-ral 3055  df-rex 3056  df-reu 3057  df-rmo 3058  df-rab 3059  df-v 3342  df-sbc 3577  df-csb 3675  df-dif 3718  df-un 3720  df-in 3722  df-ss 3729  df-pss 3731  df-nul 4059  df-if 4231  df-pw 4304  df-sn 4322  df-pr 4324  df-tp 4326  df-op 4328  df-uni 4589  df-int 4628  df-iun 4674  df-iin 4675  df-br 4805  df-opab 4865  df-mpt 4882  df-tr 4905  df-id 5174  df-eprel 5179  df-po 5187  df-so 5188  df-fr 5225  df-se 5226  df-we 5227  df-xp 5272  df-rel 5273  df-cnv 5274  df-co 5275  df-dm 5276  df-rn 5277  df-res 5278  df-ima 5279  df-pred 5841  df-ord 5887  df-on 5888  df-lim 5889  df-suc 5890  df-iota 6012  df-fun 6051  df-fn 6052  df-f 6053  df-f1 6054  df-fo 6055  df-f1o 6056  df-fv 6057  df-isom 6058  df-riota 6774  df-ov 6816  df-oprab 6817  df-mpt2 6818  df-of 7062  df-om 7231  df-1st 7333  df-2nd 7334  df-supp 7464  df-wrecs 7576  df-recs 7637  df-rdg 7675  df-1o 7729  df-2o 7730  df-oadd 7733  df-er 7911  df-map 8025  df-pm 8026  df-ixp 8075  df-en 8122  df-dom 8123  df-sdom 8124  df-fin 8125  df-fsupp 8441  df-fi 8482  df-sup 8513  df-inf 8514  df-oi 8580  df-card 8955  df-cda 9182  df-pnf 10268  df-mnf 10269  df-xr 10270  df-ltxr 10271  df-le 10272  df-sub 10460  df-neg 10461  df-div 10877  df-nn 11213  df-2 11271  df-3 11272  df-4 11273  df-5 11274  df-6 11275  df-7 11276  df-8 11277  df-9 11278  df-n0 11485  df-z 11570  df-dec 11686  df-uz 11880  df-q 11982  df-rp 12026  df-xneg 12139  df-xadd 12140  df-xmul 12141  df-ioo 12372  df-ico 12374  df-icc 12375  df-fz 12520  df-fzo 12660  df-seq 12996  df-exp 13055  df-hash 13312  df-cj 14038  df-re 14039  df-im 14040  df-sqrt 14174  df-abs 14175  df-clim 14418  df-sum 14616  df-struct 16061  df-ndx 16062  df-slot 16063  df-base 16065  df-sets 16066  df-ress 16067  df-plusg 16156  df-mulr 16157  df-starv 16158  df-sca 16159  df-vsca 16160  df-ip 16161  df-tset 16162  df-ple 16163  df-ds 16166  df-unif 16167  df-hom 16168  df-cco 16169  df-rest 16285  df-topn 16286  df-0g 16304  df-gsum 16305  df-topgen 16306  df-pt 16307  df-prds 16310  df-xrs 16364  df-qtop 16369  df-imas 16370  df-xps 16372  df-mre 16448  df-mrc 16449  df-acs 16451  df-mgm 17443  df-sgrp 17485  df-mnd 17496  df-submnd 17537  df-mulg 17742  df-cntz 17950  df-cmn 18395  df-psmet 19940  df-xmet 19941  df-met 19942  df-bl 19943  df-mopn 19944  df-fbas 19945  df-fg 19946  df-cnfld 19949  df-top 20901  df-topon 20918  df-topsp 20939  df-bases 20952  df-cld 21025  df-ntr 21026  df-cls 21027  df-nei 21104  df-cn 21233  df-cnp 21234  df-lm 21235  df-t1 21320  df-haus 21321  df-cmp 21392  df-tx 21567  df-hmeo 21760  df-fil 21851  df-fm 21943  df-flim 21944  df-flf 21945  df-fcls 21946  df-xms 22326  df-ms 22327  df-tms 22328  df-cncf 22882  df-cfil 23253  df-cau 23254  df-cmet 23255  df-grpo 27656  df-gid 27657  df-ginv 27658  df-gdiv 27659  df-ablo 27708  df-vc 27723  df-nv 27756  df-va 27759  df-ba 27760  df-sm 27761  df-0v 27762  df-vs 27763  df-nmcv 27764  df-ims 27765  df-dip 27865  df-lno 27908  df-nmoo 27909  df-blo 27910  df-0o 27911  df-ph 27977  df-cbn 28028  df-hlo 28051 This theorem is referenced by:  hmopbdoptHIL  29156
 Copyright terms: Public domain W3C validator