Hilbert Space Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  HSE Home  >  Th. List  >  hvadd32 Structured version   Visualization version   GIF version

 Description: Commutative/associative law. (Contributed by NM, 16-Oct-1999.) (New usage is discouraged.)
Assertion
Ref Expression
hvadd32 ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ) → ((𝐴 + 𝐵) + 𝐶) = ((𝐴 + 𝐶) + 𝐵))

Proof of Theorem hvadd32
StepHypRef Expression
1 ax-hvcom 27986 . . . 4 ((𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ) → (𝐵 + 𝐶) = (𝐶 + 𝐵))
21oveq2d 6706 . . 3 ((𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ) → (𝐴 + (𝐵 + 𝐶)) = (𝐴 + (𝐶 + 𝐵)))
323adant1 1099 . 2 ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ) → (𝐴 + (𝐵 + 𝐶)) = (𝐴 + (𝐶 + 𝐵)))
4 ax-hvass 27987 . 2 ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ) → ((𝐴 + 𝐵) + 𝐶) = (𝐴 + (𝐵 + 𝐶)))
5 ax-hvass 27987 . . 3 ((𝐴 ∈ ℋ ∧ 𝐶 ∈ ℋ ∧ 𝐵 ∈ ℋ) → ((𝐴 + 𝐶) + 𝐵) = (𝐴 + (𝐶 + 𝐵)))
653com23 1291 . 2 ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ) → ((𝐴 + 𝐶) + 𝐵) = (𝐴 + (𝐶 + 𝐵)))
73, 4, 63eqtr4d 2695 1 ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ) → ((𝐴 + 𝐵) + 𝐶) = ((𝐴 + 𝐶) + 𝐵))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ∧ wa 383   ∧ w3a 1054   = wceq 1523   ∈ wcel 2030  (class class class)co 6690   ℋchil 27904   +ℎ cva 27905 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1762  ax-4 1777  ax-5 1879  ax-6 1945  ax-7 1981  ax-9 2039  ax-10 2059  ax-11 2074  ax-12 2087  ax-13 2282  ax-ext 2631  ax-hvcom 27986  ax-hvass 27987 This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3an 1056  df-tru 1526  df-ex 1745  df-nf 1750  df-sb 1938  df-clab 2638  df-cleq 2644  df-clel 2647  df-nfc 2782  df-rex 2947  df-rab 2950  df-v 3233  df-dif 3610  df-un 3612  df-in 3614  df-ss 3621  df-nul 3949  df-if 4120  df-sn 4211  df-pr 4213  df-op 4217  df-uni 4469  df-br 4686  df-iota 5889  df-fv 5934  df-ov 6693 This theorem is referenced by:  hvadd4  28021  hvadd32i  28039
 Copyright terms: Public domain W3C validator