HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  hvadd4 Structured version   Visualization version   GIF version

Theorem hvadd4 27083
Description: Hilbert vector space addition law. (Contributed by NM, 16-Oct-1999.) (New usage is discouraged.)
Assertion
Ref Expression
hvadd4 (((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) ∧ (𝐶 ∈ ℋ ∧ 𝐷 ∈ ℋ)) → ((𝐴 + 𝐵) + (𝐶 + 𝐷)) = ((𝐴 + 𝐶) + (𝐵 + 𝐷)))

Proof of Theorem hvadd4
StepHypRef Expression
1 hvadd32 27081 . . . . 5 ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ) → ((𝐴 + 𝐵) + 𝐶) = ((𝐴 + 𝐶) + 𝐵))
21oveq1d 6542 . . . 4 ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ) → (((𝐴 + 𝐵) + 𝐶) + 𝐷) = (((𝐴 + 𝐶) + 𝐵) + 𝐷))
323expa 1256 . . 3 (((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) ∧ 𝐶 ∈ ℋ) → (((𝐴 + 𝐵) + 𝐶) + 𝐷) = (((𝐴 + 𝐶) + 𝐵) + 𝐷))
43adantrr 748 . 2 (((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) ∧ (𝐶 ∈ ℋ ∧ 𝐷 ∈ ℋ)) → (((𝐴 + 𝐵) + 𝐶) + 𝐷) = (((𝐴 + 𝐶) + 𝐵) + 𝐷))
5 hvaddcl 27059 . . 3 ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) → (𝐴 + 𝐵) ∈ ℋ)
6 ax-hvass 27049 . . . 4 (((𝐴 + 𝐵) ∈ ℋ ∧ 𝐶 ∈ ℋ ∧ 𝐷 ∈ ℋ) → (((𝐴 + 𝐵) + 𝐶) + 𝐷) = ((𝐴 + 𝐵) + (𝐶 + 𝐷)))
763expb 1257 . . 3 (((𝐴 + 𝐵) ∈ ℋ ∧ (𝐶 ∈ ℋ ∧ 𝐷 ∈ ℋ)) → (((𝐴 + 𝐵) + 𝐶) + 𝐷) = ((𝐴 + 𝐵) + (𝐶 + 𝐷)))
85, 7sylan 486 . 2 (((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) ∧ (𝐶 ∈ ℋ ∧ 𝐷 ∈ ℋ)) → (((𝐴 + 𝐵) + 𝐶) + 𝐷) = ((𝐴 + 𝐵) + (𝐶 + 𝐷)))
9 hvaddcl 27059 . . . 4 ((𝐴 ∈ ℋ ∧ 𝐶 ∈ ℋ) → (𝐴 + 𝐶) ∈ ℋ)
10 ax-hvass 27049 . . . . 5 (((𝐴 + 𝐶) ∈ ℋ ∧ 𝐵 ∈ ℋ ∧ 𝐷 ∈ ℋ) → (((𝐴 + 𝐶) + 𝐵) + 𝐷) = ((𝐴 + 𝐶) + (𝐵 + 𝐷)))
11103expb 1257 . . . 4 (((𝐴 + 𝐶) ∈ ℋ ∧ (𝐵 ∈ ℋ ∧ 𝐷 ∈ ℋ)) → (((𝐴 + 𝐶) + 𝐵) + 𝐷) = ((𝐴 + 𝐶) + (𝐵 + 𝐷)))
129, 11sylan 486 . . 3 (((𝐴 ∈ ℋ ∧ 𝐶 ∈ ℋ) ∧ (𝐵 ∈ ℋ ∧ 𝐷 ∈ ℋ)) → (((𝐴 + 𝐶) + 𝐵) + 𝐷) = ((𝐴 + 𝐶) + (𝐵 + 𝐷)))
1312an4s 864 . 2 (((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) ∧ (𝐶 ∈ ℋ ∧ 𝐷 ∈ ℋ)) → (((𝐴 + 𝐶) + 𝐵) + 𝐷) = ((𝐴 + 𝐶) + (𝐵 + 𝐷)))
144, 8, 133eqtr3d 2651 1 (((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) ∧ (𝐶 ∈ ℋ ∧ 𝐷 ∈ ℋ)) → ((𝐴 + 𝐵) + (𝐶 + 𝐷)) = ((𝐴 + 𝐶) + (𝐵 + 𝐷)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 382  w3a 1030   = wceq 1474  wcel 1976  (class class class)co 6527  chil 26966   + cva 26967
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1712  ax-4 1727  ax-5 1826  ax-6 1874  ax-7 1921  ax-9 1985  ax-10 2005  ax-11 2020  ax-12 2033  ax-13 2233  ax-ext 2589  ax-sep 4703  ax-nul 4712  ax-pr 4828  ax-hfvadd 27047  ax-hvcom 27048  ax-hvass 27049
This theorem depends on definitions:  df-bi 195  df-or 383  df-an 384  df-3an 1032  df-tru 1477  df-ex 1695  df-nf 1700  df-sb 1867  df-eu 2461  df-mo 2462  df-clab 2596  df-cleq 2602  df-clel 2605  df-nfc 2739  df-ral 2900  df-rex 2901  df-rab 2904  df-v 3174  df-sbc 3402  df-csb 3499  df-dif 3542  df-un 3544  df-in 3546  df-ss 3553  df-nul 3874  df-if 4036  df-sn 4125  df-pr 4127  df-op 4131  df-uni 4367  df-iun 4451  df-br 4578  df-opab 4638  df-mpt 4639  df-id 4943  df-xp 5034  df-rel 5035  df-cnv 5036  df-co 5037  df-dm 5038  df-rn 5039  df-iota 5754  df-fun 5792  df-fn 5793  df-f 5794  df-fv 5798  df-ov 6530
This theorem is referenced by:  hvsub4  27084  hvadd4i  27105  shscli  27366  spanunsni  27628  mayete3i  27777  lnophsi  28050
  Copyright terms: Public domain W3C validator