HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  hvmul0or Structured version   Visualization version   GIF version

Theorem hvmul0or 28010
Description: If a scalar product is zero, one of its factors must be zero. (Contributed by NM, 19-May-2005.) (New usage is discouraged.)
Assertion
Ref Expression
hvmul0or ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℋ) → ((𝐴 · 𝐵) = 0 ↔ (𝐴 = 0 ∨ 𝐵 = 0)))

Proof of Theorem hvmul0or
StepHypRef Expression
1 df-ne 2824 . . . . 5 (𝐴 ≠ 0 ↔ ¬ 𝐴 = 0)
2 oveq2 6698 . . . . . . . 8 ((𝐴 · 𝐵) = 0 → ((1 / 𝐴) · (𝐴 · 𝐵)) = ((1 / 𝐴) · 0))
32ad2antlr 763 . . . . . . 7 ((((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℋ) ∧ (𝐴 · 𝐵) = 0) ∧ 𝐴 ≠ 0) → ((1 / 𝐴) · (𝐴 · 𝐵)) = ((1 / 𝐴) · 0))
4 recid2 10738 . . . . . . . . . . 11 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → ((1 / 𝐴) · 𝐴) = 1)
54oveq1d 6705 . . . . . . . . . 10 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → (((1 / 𝐴) · 𝐴) · 𝐵) = (1 · 𝐵))
65adantlr 751 . . . . . . . . 9 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℋ) ∧ 𝐴 ≠ 0) → (((1 / 𝐴) · 𝐴) · 𝐵) = (1 · 𝐵))
7 reccl 10730 . . . . . . . . . . 11 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → (1 / 𝐴) ∈ ℂ)
87adantlr 751 . . . . . . . . . 10 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℋ) ∧ 𝐴 ≠ 0) → (1 / 𝐴) ∈ ℂ)
9 simpll 805 . . . . . . . . . 10 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℋ) ∧ 𝐴 ≠ 0) → 𝐴 ∈ ℂ)
10 simplr 807 . . . . . . . . . 10 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℋ) ∧ 𝐴 ≠ 0) → 𝐵 ∈ ℋ)
11 ax-hvmulass 27992 . . . . . . . . . 10 (((1 / 𝐴) ∈ ℂ ∧ 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℋ) → (((1 / 𝐴) · 𝐴) · 𝐵) = ((1 / 𝐴) · (𝐴 · 𝐵)))
128, 9, 10, 11syl3anc 1366 . . . . . . . . 9 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℋ) ∧ 𝐴 ≠ 0) → (((1 / 𝐴) · 𝐴) · 𝐵) = ((1 / 𝐴) · (𝐴 · 𝐵)))
13 ax-hvmulid 27991 . . . . . . . . . 10 (𝐵 ∈ ℋ → (1 · 𝐵) = 𝐵)
1413ad2antlr 763 . . . . . . . . 9 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℋ) ∧ 𝐴 ≠ 0) → (1 · 𝐵) = 𝐵)
156, 12, 143eqtr3d 2693 . . . . . . . 8 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℋ) ∧ 𝐴 ≠ 0) → ((1 / 𝐴) · (𝐴 · 𝐵)) = 𝐵)
1615adantlr 751 . . . . . . 7 ((((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℋ) ∧ (𝐴 · 𝐵) = 0) ∧ 𝐴 ≠ 0) → ((1 / 𝐴) · (𝐴 · 𝐵)) = 𝐵)
17 hvmul0 28009 . . . . . . . . . 10 ((1 / 𝐴) ∈ ℂ → ((1 / 𝐴) · 0) = 0)
187, 17syl 17 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → ((1 / 𝐴) · 0) = 0)
1918adantlr 751 . . . . . . . 8 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℋ) ∧ 𝐴 ≠ 0) → ((1 / 𝐴) · 0) = 0)
2019adantlr 751 . . . . . . 7 ((((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℋ) ∧ (𝐴 · 𝐵) = 0) ∧ 𝐴 ≠ 0) → ((1 / 𝐴) · 0) = 0)
213, 16, 203eqtr3d 2693 . . . . . 6 ((((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℋ) ∧ (𝐴 · 𝐵) = 0) ∧ 𝐴 ≠ 0) → 𝐵 = 0)
2221ex 449 . . . . 5 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℋ) ∧ (𝐴 · 𝐵) = 0) → (𝐴 ≠ 0 → 𝐵 = 0))
231, 22syl5bir 233 . . . 4 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℋ) ∧ (𝐴 · 𝐵) = 0) → (¬ 𝐴 = 0 → 𝐵 = 0))
2423orrd 392 . . 3 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℋ) ∧ (𝐴 · 𝐵) = 0) → (𝐴 = 0 ∨ 𝐵 = 0))
2524ex 449 . 2 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℋ) → ((𝐴 · 𝐵) = 0 → (𝐴 = 0 ∨ 𝐵 = 0)))
26 ax-hvmul0 27995 . . . . 5 (𝐵 ∈ ℋ → (0 · 𝐵) = 0)
27 oveq1 6697 . . . . . 6 (𝐴 = 0 → (𝐴 · 𝐵) = (0 · 𝐵))
2827eqeq1d 2653 . . . . 5 (𝐴 = 0 → ((𝐴 · 𝐵) = 0 ↔ (0 · 𝐵) = 0))
2926, 28syl5ibrcom 237 . . . 4 (𝐵 ∈ ℋ → (𝐴 = 0 → (𝐴 · 𝐵) = 0))
3029adantl 481 . . 3 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℋ) → (𝐴 = 0 → (𝐴 · 𝐵) = 0))
31 hvmul0 28009 . . . . 5 (𝐴 ∈ ℂ → (𝐴 · 0) = 0)
32 oveq2 6698 . . . . . 6 (𝐵 = 0 → (𝐴 · 𝐵) = (𝐴 · 0))
3332eqeq1d 2653 . . . . 5 (𝐵 = 0 → ((𝐴 · 𝐵) = 0 ↔ (𝐴 · 0) = 0))
3431, 33syl5ibrcom 237 . . . 4 (𝐴 ∈ ℂ → (𝐵 = 0 → (𝐴 · 𝐵) = 0))
3534adantr 480 . . 3 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℋ) → (𝐵 = 0 → (𝐴 · 𝐵) = 0))
3630, 35jaod 394 . 2 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℋ) → ((𝐴 = 0 ∨ 𝐵 = 0) → (𝐴 · 𝐵) = 0))
3725, 36impbid 202 1 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℋ) → ((𝐴 · 𝐵) = 0 ↔ (𝐴 = 0 ∨ 𝐵 = 0)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 196  wo 382  wa 383   = wceq 1523  wcel 2030  wne 2823  (class class class)co 6690  cc 9972  0cc0 9974  1c1 9975   · cmul 9979   / cdiv 10722  chil 27904   · csm 27906  0c0v 27909
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1762  ax-4 1777  ax-5 1879  ax-6 1945  ax-7 1981  ax-8 2032  ax-9 2039  ax-10 2059  ax-11 2074  ax-12 2087  ax-13 2282  ax-ext 2631  ax-sep 4814  ax-nul 4822  ax-pow 4873  ax-pr 4936  ax-un 6991  ax-resscn 10031  ax-1cn 10032  ax-icn 10033  ax-addcl 10034  ax-addrcl 10035  ax-mulcl 10036  ax-mulrcl 10037  ax-mulcom 10038  ax-addass 10039  ax-mulass 10040  ax-distr 10041  ax-i2m1 10042  ax-1ne0 10043  ax-1rid 10044  ax-rnegex 10045  ax-rrecex 10046  ax-cnre 10047  ax-pre-lttri 10048  ax-pre-lttrn 10049  ax-pre-ltadd 10050  ax-pre-mulgt0 10051  ax-hv0cl 27988  ax-hvmulid 27991  ax-hvmulass 27992  ax-hvmul0 27995
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1055  df-3an 1056  df-tru 1526  df-ex 1745  df-nf 1750  df-sb 1938  df-eu 2502  df-mo 2503  df-clab 2638  df-cleq 2644  df-clel 2647  df-nfc 2782  df-ne 2824  df-nel 2927  df-ral 2946  df-rex 2947  df-reu 2948  df-rmo 2949  df-rab 2950  df-v 3233  df-sbc 3469  df-csb 3567  df-dif 3610  df-un 3612  df-in 3614  df-ss 3621  df-nul 3949  df-if 4120  df-pw 4193  df-sn 4211  df-pr 4213  df-op 4217  df-uni 4469  df-br 4686  df-opab 4746  df-mpt 4763  df-id 5053  df-po 5064  df-so 5065  df-xp 5149  df-rel 5150  df-cnv 5151  df-co 5152  df-dm 5153  df-rn 5154  df-res 5155  df-ima 5156  df-iota 5889  df-fun 5928  df-fn 5929  df-f 5930  df-f1 5931  df-fo 5932  df-f1o 5933  df-fv 5934  df-riota 6651  df-ov 6693  df-oprab 6694  df-mpt2 6695  df-er 7787  df-en 7998  df-dom 7999  df-sdom 8000  df-pnf 10114  df-mnf 10115  df-xr 10116  df-ltxr 10117  df-le 10118  df-sub 10306  df-neg 10307  df-div 10723
This theorem is referenced by:  hvmulcan  28057  hvmulcan2  28058  nmlnop0iALT  28982
  Copyright terms: Public domain W3C validator