HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  hvmulcan2 Structured version   Visualization version   GIF version

Theorem hvmulcan2 27779
Description: Cancellation law for scalar multiplication. (Contributed by NM, 19-May-2005.) (New usage is discouraged.)
Assertion
Ref Expression
hvmulcan2 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ (𝐶 ∈ ℋ ∧ 𝐶 ≠ 0)) → ((𝐴 · 𝐶) = (𝐵 · 𝐶) ↔ 𝐴 = 𝐵))

Proof of Theorem hvmulcan2
StepHypRef Expression
1 hvmulcl 27719 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝐶 ∈ ℋ) → (𝐴 · 𝐶) ∈ ℋ)
213adant2 1078 . . . 4 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℋ) → (𝐴 · 𝐶) ∈ ℋ)
3 hvmulcl 27719 . . . . 5 ((𝐵 ∈ ℂ ∧ 𝐶 ∈ ℋ) → (𝐵 · 𝐶) ∈ ℋ)
433adant1 1077 . . . 4 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℋ) → (𝐵 · 𝐶) ∈ ℋ)
5 hvsubeq0 27774 . . . 4 (((𝐴 · 𝐶) ∈ ℋ ∧ (𝐵 · 𝐶) ∈ ℋ) → (((𝐴 · 𝐶) − (𝐵 · 𝐶)) = 0 ↔ (𝐴 · 𝐶) = (𝐵 · 𝐶)))
62, 4, 5syl2anc 692 . . 3 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℋ) → (((𝐴 · 𝐶) − (𝐵 · 𝐶)) = 0 ↔ (𝐴 · 𝐶) = (𝐵 · 𝐶)))
763adant3r 1320 . 2 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ (𝐶 ∈ ℋ ∧ 𝐶 ≠ 0)) → (((𝐴 · 𝐶) − (𝐵 · 𝐶)) = 0 ↔ (𝐴 · 𝐶) = (𝐵 · 𝐶)))
8 hvsubdistr2 27756 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℋ) → ((𝐴𝐵) · 𝐶) = ((𝐴 · 𝐶) − (𝐵 · 𝐶)))
98eqeq1d 2623 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℋ) → (((𝐴𝐵) · 𝐶) = 0 ↔ ((𝐴 · 𝐶) − (𝐵 · 𝐶)) = 0))
10 subcl 10224 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴𝐵) ∈ ℂ)
11 hvmul0or 27731 . . . . . 6 (((𝐴𝐵) ∈ ℂ ∧ 𝐶 ∈ ℋ) → (((𝐴𝐵) · 𝐶) = 0 ↔ ((𝐴𝐵) = 0 ∨ 𝐶 = 0)))
1210, 11stoic3 1698 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℋ) → (((𝐴𝐵) · 𝐶) = 0 ↔ ((𝐴𝐵) = 0 ∨ 𝐶 = 0)))
139, 12bitr3d 270 . . . 4 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℋ) → (((𝐴 · 𝐶) − (𝐵 · 𝐶)) = 0 ↔ ((𝐴𝐵) = 0 ∨ 𝐶 = 0)))
14133adant3r 1320 . . 3 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ (𝐶 ∈ ℋ ∧ 𝐶 ≠ 0)) → (((𝐴 · 𝐶) − (𝐵 · 𝐶)) = 0 ↔ ((𝐴𝐵) = 0 ∨ 𝐶 = 0)))
15 df-ne 2791 . . . . . 6 (𝐶 ≠ 0 ↔ ¬ 𝐶 = 0)
16 biorf 420 . . . . . . 7 𝐶 = 0 → ((𝐴𝐵) = 0 ↔ (𝐶 = 0 ∨ (𝐴𝐵) = 0)))
17 orcom 402 . . . . . . 7 ((𝐶 = 0 ∨ (𝐴𝐵) = 0) ↔ ((𝐴𝐵) = 0 ∨ 𝐶 = 0))
1816, 17syl6bb 276 . . . . . 6 𝐶 = 0 → ((𝐴𝐵) = 0 ↔ ((𝐴𝐵) = 0 ∨ 𝐶 = 0)))
1915, 18sylbi 207 . . . . 5 (𝐶 ≠ 0 → ((𝐴𝐵) = 0 ↔ ((𝐴𝐵) = 0 ∨ 𝐶 = 0)))
2019ad2antll 764 . . . 4 ((𝐵 ∈ ℂ ∧ (𝐶 ∈ ℋ ∧ 𝐶 ≠ 0)) → ((𝐴𝐵) = 0 ↔ ((𝐴𝐵) = 0 ∨ 𝐶 = 0)))
21203adant1 1077 . . 3 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ (𝐶 ∈ ℋ ∧ 𝐶 ≠ 0)) → ((𝐴𝐵) = 0 ↔ ((𝐴𝐵) = 0 ∨ 𝐶 = 0)))
22 subeq0 10251 . . . 4 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐴𝐵) = 0 ↔ 𝐴 = 𝐵))
23223adant3 1079 . . 3 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ (𝐶 ∈ ℋ ∧ 𝐶 ≠ 0)) → ((𝐴𝐵) = 0 ↔ 𝐴 = 𝐵))
2414, 21, 233bitr2d 296 . 2 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ (𝐶 ∈ ℋ ∧ 𝐶 ≠ 0)) → (((𝐴 · 𝐶) − (𝐵 · 𝐶)) = 0𝐴 = 𝐵))
257, 24bitr3d 270 1 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ (𝐶 ∈ ℋ ∧ 𝐶 ≠ 0)) → ((𝐴 · 𝐶) = (𝐵 · 𝐶) ↔ 𝐴 = 𝐵))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 196  wo 383  wa 384  w3a 1036   = wceq 1480  wcel 1987  wne 2790  (class class class)co 6604  cc 9878  0cc0 9880  cmin 10210  chil 27625   · csm 27627  0c0v 27630   cmv 27631
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-8 1989  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601  ax-sep 4741  ax-nul 4749  ax-pow 4803  ax-pr 4867  ax-un 6902  ax-resscn 9937  ax-1cn 9938  ax-icn 9939  ax-addcl 9940  ax-addrcl 9941  ax-mulcl 9942  ax-mulrcl 9943  ax-mulcom 9944  ax-addass 9945  ax-mulass 9946  ax-distr 9947  ax-i2m1 9948  ax-1ne0 9949  ax-1rid 9950  ax-rnegex 9951  ax-rrecex 9952  ax-cnre 9953  ax-pre-lttri 9954  ax-pre-lttrn 9955  ax-pre-ltadd 9956  ax-pre-mulgt0 9957  ax-hvcom 27707  ax-hvass 27708  ax-hv0cl 27709  ax-hvaddid 27710  ax-hfvmul 27711  ax-hvmulid 27712  ax-hvmulass 27713  ax-hvdistr2 27715  ax-hvmul0 27716
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1037  df-3an 1038  df-tru 1483  df-ex 1702  df-nf 1707  df-sb 1878  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-ne 2791  df-nel 2894  df-ral 2912  df-rex 2913  df-reu 2914  df-rmo 2915  df-rab 2916  df-v 3188  df-sbc 3418  df-csb 3515  df-dif 3558  df-un 3560  df-in 3562  df-ss 3569  df-nul 3892  df-if 4059  df-pw 4132  df-sn 4149  df-pr 4151  df-op 4155  df-uni 4403  df-iun 4487  df-br 4614  df-opab 4674  df-mpt 4675  df-id 4989  df-po 4995  df-so 4996  df-xp 5080  df-rel 5081  df-cnv 5082  df-co 5083  df-dm 5084  df-rn 5085  df-res 5086  df-ima 5087  df-iota 5810  df-fun 5849  df-fn 5850  df-f 5851  df-f1 5852  df-fo 5853  df-f1o 5854  df-fv 5855  df-riota 6565  df-ov 6607  df-oprab 6608  df-mpt2 6609  df-er 7687  df-en 7900  df-dom 7901  df-sdom 7902  df-pnf 10020  df-mnf 10021  df-xr 10022  df-ltxr 10023  df-le 10024  df-sub 10212  df-neg 10213  df-div 10629  df-hvsub 27677
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator