HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  hvnegdii Structured version   Visualization version   GIF version

Theorem hvnegdii 27768
Description: Distribution of negative over subtraction. (Contributed by NM, 31-Oct-1999.) (New usage is discouraged.)
Hypotheses
Ref Expression
hvnegdi.1 𝐴 ∈ ℋ
hvnegdi.2 𝐵 ∈ ℋ
Assertion
Ref Expression
hvnegdii (-1 · (𝐴 𝐵)) = (𝐵 𝐴)

Proof of Theorem hvnegdii
StepHypRef Expression
1 hvnegdi.1 . . . 4 𝐴 ∈ ℋ
2 hvnegdi.2 . . . 4 𝐵 ∈ ℋ
31, 2hvsubvali 27726 . . 3 (𝐴 𝐵) = (𝐴 + (-1 · 𝐵))
43oveq2i 6615 . 2 (-1 · (𝐴 𝐵)) = (-1 · (𝐴 + (-1 · 𝐵)))
5 neg1cn 11068 . . 3 -1 ∈ ℂ
65, 2hvmulcli 27720 . . 3 (-1 · 𝐵) ∈ ℋ
75, 1, 6hvdistr1i 27757 . 2 (-1 · (𝐴 + (-1 · 𝐵))) = ((-1 · 𝐴) + (-1 · (-1 · 𝐵)))
8 neg1mulneg1e1 11189 . . . . . 6 (-1 · -1) = 1
98oveq1i 6614 . . . . 5 ((-1 · -1) · 𝐵) = (1 · 𝐵)
105, 5, 2hvmulassi 27752 . . . . 5 ((-1 · -1) · 𝐵) = (-1 · (-1 · 𝐵))
11 ax-hvmulid 27712 . . . . . 6 (𝐵 ∈ ℋ → (1 · 𝐵) = 𝐵)
122, 11ax-mp 5 . . . . 5 (1 · 𝐵) = 𝐵
139, 10, 123eqtr3i 2651 . . . 4 (-1 · (-1 · 𝐵)) = 𝐵
1413oveq1i 6614 . . 3 ((-1 · (-1 · 𝐵)) + (-1 · 𝐴)) = (𝐵 + (-1 · 𝐴))
155, 1hvmulcli 27720 . . . 4 (-1 · 𝐴) ∈ ℋ
165, 6hvmulcli 27720 . . . 4 (-1 · (-1 · 𝐵)) ∈ ℋ
1715, 16hvcomi 27725 . . 3 ((-1 · 𝐴) + (-1 · (-1 · 𝐵))) = ((-1 · (-1 · 𝐵)) + (-1 · 𝐴))
182, 1hvsubvali 27726 . . 3 (𝐵 𝐴) = (𝐵 + (-1 · 𝐴))
1914, 17, 183eqtr4i 2653 . 2 ((-1 · 𝐴) + (-1 · (-1 · 𝐵))) = (𝐵 𝐴)
204, 7, 193eqtri 2647 1 (-1 · (𝐴 𝐵)) = (𝐵 𝐴)
Colors of variables: wff setvar class
Syntax hints:   = wceq 1480  wcel 1987  (class class class)co 6604  1c1 9881   · cmul 9885  -cneg 10211  chil 27625   + cva 27626   · csm 27627   cmv 27631
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-8 1989  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601  ax-sep 4741  ax-nul 4749  ax-pow 4803  ax-pr 4867  ax-un 6902  ax-resscn 9937  ax-1cn 9938  ax-icn 9939  ax-addcl 9940  ax-addrcl 9941  ax-mulcl 9942  ax-mulrcl 9943  ax-mulcom 9944  ax-addass 9945  ax-mulass 9946  ax-distr 9947  ax-i2m1 9948  ax-1ne0 9949  ax-1rid 9950  ax-rnegex 9951  ax-rrecex 9952  ax-cnre 9953  ax-pre-lttri 9954  ax-pre-lttrn 9955  ax-pre-ltadd 9956  ax-hvcom 27707  ax-hfvmul 27711  ax-hvmulid 27712  ax-hvmulass 27713  ax-hvdistr1 27714
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1037  df-3an 1038  df-tru 1483  df-ex 1702  df-nf 1707  df-sb 1878  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-ne 2791  df-nel 2894  df-ral 2912  df-rex 2913  df-reu 2914  df-rab 2916  df-v 3188  df-sbc 3418  df-csb 3515  df-dif 3558  df-un 3560  df-in 3562  df-ss 3569  df-nul 3892  df-if 4059  df-pw 4132  df-sn 4149  df-pr 4151  df-op 4155  df-uni 4403  df-iun 4487  df-br 4614  df-opab 4674  df-mpt 4675  df-id 4989  df-po 4995  df-so 4996  df-xp 5080  df-rel 5081  df-cnv 5082  df-co 5083  df-dm 5084  df-rn 5085  df-res 5086  df-ima 5087  df-iota 5810  df-fun 5849  df-fn 5850  df-f 5851  df-f1 5852  df-fo 5853  df-f1o 5854  df-fv 5855  df-riota 6565  df-ov 6607  df-oprab 6608  df-mpt2 6609  df-er 7687  df-en 7900  df-dom 7901  df-sdom 7902  df-pnf 10020  df-mnf 10021  df-ltxr 10023  df-sub 10212  df-neg 10213  df-hvsub 27677
This theorem is referenced by:  hvnegdi  27773  hisubcomi  27810  normsubi  27847  normpar2i  27862  pjsslem  28387  pjcji  28392
  Copyright terms: Public domain W3C validator