HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  hvsubass Structured version   Visualization version   GIF version

Theorem hvsubass 28029
Description: Hilbert vector space associative law for subtraction. (Contributed by Mario Carneiro, 15-May-2014.) (New usage is discouraged.)
Assertion
Ref Expression
hvsubass ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ) → ((𝐴 𝐵) − 𝐶) = (𝐴 (𝐵 + 𝐶)))

Proof of Theorem hvsubass
StepHypRef Expression
1 neg1cn 11162 . . . 4 -1 ∈ ℂ
2 hvmulcl 27998 . . . 4 ((-1 ∈ ℂ ∧ 𝐵 ∈ ℋ) → (-1 · 𝐵) ∈ ℋ)
31, 2mpan 706 . . 3 (𝐵 ∈ ℋ → (-1 · 𝐵) ∈ ℋ)
4 hvaddsubass 28026 . . 3 ((𝐴 ∈ ℋ ∧ (-1 · 𝐵) ∈ ℋ ∧ 𝐶 ∈ ℋ) → ((𝐴 + (-1 · 𝐵)) − 𝐶) = (𝐴 + ((-1 · 𝐵) − 𝐶)))
53, 4syl3an2 1400 . 2 ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ) → ((𝐴 + (-1 · 𝐵)) − 𝐶) = (𝐴 + ((-1 · 𝐵) − 𝐶)))
6 hvsubval 28001 . . . 4 ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) → (𝐴 𝐵) = (𝐴 + (-1 · 𝐵)))
763adant3 1101 . . 3 ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ) → (𝐴 𝐵) = (𝐴 + (-1 · 𝐵)))
87oveq1d 6705 . 2 ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ) → ((𝐴 𝐵) − 𝐶) = ((𝐴 + (-1 · 𝐵)) − 𝐶))
9 simp1 1081 . . . 4 ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ) → 𝐴 ∈ ℋ)
10 hvaddcl 27997 . . . . 5 ((𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ) → (𝐵 + 𝐶) ∈ ℋ)
11103adant1 1099 . . . 4 ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ) → (𝐵 + 𝐶) ∈ ℋ)
12 hvsubval 28001 . . . 4 ((𝐴 ∈ ℋ ∧ (𝐵 + 𝐶) ∈ ℋ) → (𝐴 (𝐵 + 𝐶)) = (𝐴 + (-1 · (𝐵 + 𝐶))))
139, 11, 12syl2anc 694 . . 3 ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ) → (𝐴 (𝐵 + 𝐶)) = (𝐴 + (-1 · (𝐵 + 𝐶))))
14 hvsubval 28001 . . . . . . 7 (((-1 · 𝐵) ∈ ℋ ∧ 𝐶 ∈ ℋ) → ((-1 · 𝐵) − 𝐶) = ((-1 · 𝐵) + (-1 · 𝐶)))
153, 14sylan 487 . . . . . 6 ((𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ) → ((-1 · 𝐵) − 𝐶) = ((-1 · 𝐵) + (-1 · 𝐶)))
16153adant1 1099 . . . . 5 ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ) → ((-1 · 𝐵) − 𝐶) = ((-1 · 𝐵) + (-1 · 𝐶)))
17 ax-hvdistr1 27993 . . . . . . 7 ((-1 ∈ ℂ ∧ 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ) → (-1 · (𝐵 + 𝐶)) = ((-1 · 𝐵) + (-1 · 𝐶)))
181, 17mp3an1 1451 . . . . . 6 ((𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ) → (-1 · (𝐵 + 𝐶)) = ((-1 · 𝐵) + (-1 · 𝐶)))
19183adant1 1099 . . . . 5 ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ) → (-1 · (𝐵 + 𝐶)) = ((-1 · 𝐵) + (-1 · 𝐶)))
2016, 19eqtr4d 2688 . . . 4 ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ) → ((-1 · 𝐵) − 𝐶) = (-1 · (𝐵 + 𝐶)))
2120oveq2d 6706 . . 3 ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ) → (𝐴 + ((-1 · 𝐵) − 𝐶)) = (𝐴 + (-1 · (𝐵 + 𝐶))))
2213, 21eqtr4d 2688 . 2 ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ) → (𝐴 (𝐵 + 𝐶)) = (𝐴 + ((-1 · 𝐵) − 𝐶)))
235, 8, 223eqtr4d 2695 1 ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ) → ((𝐴 𝐵) − 𝐶) = (𝐴 (𝐵 + 𝐶)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  w3a 1054   = wceq 1523  wcel 2030  (class class class)co 6690  cc 9972  1c1 9975  -cneg 10305  chil 27904   + cva 27905   · csm 27906   cmv 27910
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1762  ax-4 1777  ax-5 1879  ax-6 1945  ax-7 1981  ax-8 2032  ax-9 2039  ax-10 2059  ax-11 2074  ax-12 2087  ax-13 2282  ax-ext 2631  ax-sep 4814  ax-nul 4822  ax-pow 4873  ax-pr 4936  ax-un 6991  ax-resscn 10031  ax-1cn 10032  ax-icn 10033  ax-addcl 10034  ax-addrcl 10035  ax-mulcl 10036  ax-mulrcl 10037  ax-mulcom 10038  ax-addass 10039  ax-mulass 10040  ax-distr 10041  ax-i2m1 10042  ax-1ne0 10043  ax-1rid 10044  ax-rnegex 10045  ax-rrecex 10046  ax-cnre 10047  ax-pre-lttri 10048  ax-pre-lttrn 10049  ax-pre-ltadd 10050  ax-hfvadd 27985  ax-hvass 27987  ax-hfvmul 27990  ax-hvdistr1 27993
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1055  df-3an 1056  df-tru 1526  df-ex 1745  df-nf 1750  df-sb 1938  df-eu 2502  df-mo 2503  df-clab 2638  df-cleq 2644  df-clel 2647  df-nfc 2782  df-ne 2824  df-nel 2927  df-ral 2946  df-rex 2947  df-reu 2948  df-rab 2950  df-v 3233  df-sbc 3469  df-csb 3567  df-dif 3610  df-un 3612  df-in 3614  df-ss 3621  df-nul 3949  df-if 4120  df-pw 4193  df-sn 4211  df-pr 4213  df-op 4217  df-uni 4469  df-iun 4554  df-br 4686  df-opab 4746  df-mpt 4763  df-id 5053  df-po 5064  df-so 5065  df-xp 5149  df-rel 5150  df-cnv 5151  df-co 5152  df-dm 5153  df-rn 5154  df-res 5155  df-ima 5156  df-iota 5889  df-fun 5928  df-fn 5929  df-f 5930  df-f1 5931  df-fo 5932  df-f1o 5933  df-fv 5934  df-riota 6651  df-ov 6693  df-oprab 6694  df-mpt2 6695  df-er 7787  df-en 7998  df-dom 7999  df-sdom 8000  df-pnf 10114  df-mnf 10115  df-ltxr 10117  df-sub 10306  df-neg 10307  df-hvsub 27956
This theorem is referenced by:  hvsub32  28030  hvsubassi  28040  pjhthlem1  28378
  Copyright terms: Public domain W3C validator