MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  i1fadd Structured version   Visualization version   GIF version

Theorem i1fadd 24290
Description: The sum of two simple functions is a simple function. (Contributed by Mario Carneiro, 18-Jun-2014.)
Hypotheses
Ref Expression
i1fadd.1 (𝜑𝐹 ∈ dom ∫1)
i1fadd.2 (𝜑𝐺 ∈ dom ∫1)
Assertion
Ref Expression
i1fadd (𝜑 → (𝐹f + 𝐺) ∈ dom ∫1)

Proof of Theorem i1fadd
Dummy variables 𝑦 𝑧 𝑤 𝑣 𝑥 𝑢 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 readdcl 10614 . . . 4 ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) → (𝑥 + 𝑦) ∈ ℝ)
21adantl 484 . . 3 ((𝜑 ∧ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ)) → (𝑥 + 𝑦) ∈ ℝ)
3 i1fadd.1 . . . 4 (𝜑𝐹 ∈ dom ∫1)
4 i1ff 24271 . . . 4 (𝐹 ∈ dom ∫1𝐹:ℝ⟶ℝ)
53, 4syl 17 . . 3 (𝜑𝐹:ℝ⟶ℝ)
6 i1fadd.2 . . . 4 (𝜑𝐺 ∈ dom ∫1)
7 i1ff 24271 . . . 4 (𝐺 ∈ dom ∫1𝐺:ℝ⟶ℝ)
86, 7syl 17 . . 3 (𝜑𝐺:ℝ⟶ℝ)
9 reex 10622 . . . 4 ℝ ∈ V
109a1i 11 . . 3 (𝜑 → ℝ ∈ V)
11 inidm 4194 . . 3 (ℝ ∩ ℝ) = ℝ
122, 5, 8, 10, 10, 11off 7418 . 2 (𝜑 → (𝐹f + 𝐺):ℝ⟶ℝ)
13 i1frn 24272 . . . . . 6 (𝐹 ∈ dom ∫1 → ran 𝐹 ∈ Fin)
143, 13syl 17 . . . . 5 (𝜑 → ran 𝐹 ∈ Fin)
15 i1frn 24272 . . . . . 6 (𝐺 ∈ dom ∫1 → ran 𝐺 ∈ Fin)
166, 15syl 17 . . . . 5 (𝜑 → ran 𝐺 ∈ Fin)
17 xpfi 8783 . . . . 5 ((ran 𝐹 ∈ Fin ∧ ran 𝐺 ∈ Fin) → (ran 𝐹 × ran 𝐺) ∈ Fin)
1814, 16, 17syl2anc 586 . . . 4 (𝜑 → (ran 𝐹 × ran 𝐺) ∈ Fin)
19 eqid 2821 . . . . . 6 (𝑢 ∈ ran 𝐹, 𝑣 ∈ ran 𝐺 ↦ (𝑢 + 𝑣)) = (𝑢 ∈ ran 𝐹, 𝑣 ∈ ran 𝐺 ↦ (𝑢 + 𝑣))
20 ovex 7183 . . . . . 6 (𝑢 + 𝑣) ∈ V
2119, 20fnmpoi 7762 . . . . 5 (𝑢 ∈ ran 𝐹, 𝑣 ∈ ran 𝐺 ↦ (𝑢 + 𝑣)) Fn (ran 𝐹 × ran 𝐺)
22 dffn4 6590 . . . . 5 ((𝑢 ∈ ran 𝐹, 𝑣 ∈ ran 𝐺 ↦ (𝑢 + 𝑣)) Fn (ran 𝐹 × ran 𝐺) ↔ (𝑢 ∈ ran 𝐹, 𝑣 ∈ ran 𝐺 ↦ (𝑢 + 𝑣)):(ran 𝐹 × ran 𝐺)–onto→ran (𝑢 ∈ ran 𝐹, 𝑣 ∈ ran 𝐺 ↦ (𝑢 + 𝑣)))
2321, 22mpbi 232 . . . 4 (𝑢 ∈ ran 𝐹, 𝑣 ∈ ran 𝐺 ↦ (𝑢 + 𝑣)):(ran 𝐹 × ran 𝐺)–onto→ran (𝑢 ∈ ran 𝐹, 𝑣 ∈ ran 𝐺 ↦ (𝑢 + 𝑣))
24 fofi 8804 . . . 4 (((ran 𝐹 × ran 𝐺) ∈ Fin ∧ (𝑢 ∈ ran 𝐹, 𝑣 ∈ ran 𝐺 ↦ (𝑢 + 𝑣)):(ran 𝐹 × ran 𝐺)–onto→ran (𝑢 ∈ ran 𝐹, 𝑣 ∈ ran 𝐺 ↦ (𝑢 + 𝑣))) → ran (𝑢 ∈ ran 𝐹, 𝑣 ∈ ran 𝐺 ↦ (𝑢 + 𝑣)) ∈ Fin)
2518, 23, 24sylancl 588 . . 3 (𝜑 → ran (𝑢 ∈ ran 𝐹, 𝑣 ∈ ran 𝐺 ↦ (𝑢 + 𝑣)) ∈ Fin)
26 eqid 2821 . . . . . . . . 9 (𝑥 + 𝑦) = (𝑥 + 𝑦)
27 rspceov 7197 . . . . . . . . 9 ((𝑥 ∈ ran 𝐹𝑦 ∈ ran 𝐺 ∧ (𝑥 + 𝑦) = (𝑥 + 𝑦)) → ∃𝑢 ∈ ran 𝐹𝑣 ∈ ran 𝐺(𝑥 + 𝑦) = (𝑢 + 𝑣))
2826, 27mp3an3 1446 . . . . . . . 8 ((𝑥 ∈ ran 𝐹𝑦 ∈ ran 𝐺) → ∃𝑢 ∈ ran 𝐹𝑣 ∈ ran 𝐺(𝑥 + 𝑦) = (𝑢 + 𝑣))
29 ovex 7183 . . . . . . . . 9 (𝑥 + 𝑦) ∈ V
30 eqeq1 2825 . . . . . . . . . 10 (𝑤 = (𝑥 + 𝑦) → (𝑤 = (𝑢 + 𝑣) ↔ (𝑥 + 𝑦) = (𝑢 + 𝑣)))
31302rexbidv 3300 . . . . . . . . 9 (𝑤 = (𝑥 + 𝑦) → (∃𝑢 ∈ ran 𝐹𝑣 ∈ ran 𝐺 𝑤 = (𝑢 + 𝑣) ↔ ∃𝑢 ∈ ran 𝐹𝑣 ∈ ran 𝐺(𝑥 + 𝑦) = (𝑢 + 𝑣)))
3229, 31elab 3666 . . . . . . . 8 ((𝑥 + 𝑦) ∈ {𝑤 ∣ ∃𝑢 ∈ ran 𝐹𝑣 ∈ ran 𝐺 𝑤 = (𝑢 + 𝑣)} ↔ ∃𝑢 ∈ ran 𝐹𝑣 ∈ ran 𝐺(𝑥 + 𝑦) = (𝑢 + 𝑣))
3328, 32sylibr 236 . . . . . . 7 ((𝑥 ∈ ran 𝐹𝑦 ∈ ran 𝐺) → (𝑥 + 𝑦) ∈ {𝑤 ∣ ∃𝑢 ∈ ran 𝐹𝑣 ∈ ran 𝐺 𝑤 = (𝑢 + 𝑣)})
3433adantl 484 . . . . . 6 ((𝜑 ∧ (𝑥 ∈ ran 𝐹𝑦 ∈ ran 𝐺)) → (𝑥 + 𝑦) ∈ {𝑤 ∣ ∃𝑢 ∈ ran 𝐹𝑣 ∈ ran 𝐺 𝑤 = (𝑢 + 𝑣)})
355ffnd 6509 . . . . . . 7 (𝜑𝐹 Fn ℝ)
36 dffn3 6519 . . . . . . 7 (𝐹 Fn ℝ ↔ 𝐹:ℝ⟶ran 𝐹)
3735, 36sylib 220 . . . . . 6 (𝜑𝐹:ℝ⟶ran 𝐹)
388ffnd 6509 . . . . . . 7 (𝜑𝐺 Fn ℝ)
39 dffn3 6519 . . . . . . 7 (𝐺 Fn ℝ ↔ 𝐺:ℝ⟶ran 𝐺)
4038, 39sylib 220 . . . . . 6 (𝜑𝐺:ℝ⟶ran 𝐺)
4134, 37, 40, 10, 10, 11off 7418 . . . . 5 (𝜑 → (𝐹f + 𝐺):ℝ⟶{𝑤 ∣ ∃𝑢 ∈ ran 𝐹𝑣 ∈ ran 𝐺 𝑤 = (𝑢 + 𝑣)})
4241frnd 6515 . . . 4 (𝜑 → ran (𝐹f + 𝐺) ⊆ {𝑤 ∣ ∃𝑢 ∈ ran 𝐹𝑣 ∈ ran 𝐺 𝑤 = (𝑢 + 𝑣)})
4319rnmpo 7278 . . . 4 ran (𝑢 ∈ ran 𝐹, 𝑣 ∈ ran 𝐺 ↦ (𝑢 + 𝑣)) = {𝑤 ∣ ∃𝑢 ∈ ran 𝐹𝑣 ∈ ran 𝐺 𝑤 = (𝑢 + 𝑣)}
4442, 43sseqtrrdi 4017 . . 3 (𝜑 → ran (𝐹f + 𝐺) ⊆ ran (𝑢 ∈ ran 𝐹, 𝑣 ∈ ran 𝐺 ↦ (𝑢 + 𝑣)))
4525, 44ssfid 8735 . 2 (𝜑 → ran (𝐹f + 𝐺) ∈ Fin)
4612frnd 6515 . . . . . . 7 (𝜑 → ran (𝐹f + 𝐺) ⊆ ℝ)
4746ssdifssd 4118 . . . . . 6 (𝜑 → (ran (𝐹f + 𝐺) ∖ {0}) ⊆ ℝ)
4847sselda 3966 . . . . 5 ((𝜑𝑦 ∈ (ran (𝐹f + 𝐺) ∖ {0})) → 𝑦 ∈ ℝ)
4948recnd 10663 . . . 4 ((𝜑𝑦 ∈ (ran (𝐹f + 𝐺) ∖ {0})) → 𝑦 ∈ ℂ)
503, 6i1faddlem 24288 . . . 4 ((𝜑𝑦 ∈ ℂ) → ((𝐹f + 𝐺) “ {𝑦}) = 𝑧 ∈ ran 𝐺((𝐹 “ {(𝑦𝑧)}) ∩ (𝐺 “ {𝑧})))
5149, 50syldan 593 . . 3 ((𝜑𝑦 ∈ (ran (𝐹f + 𝐺) ∖ {0})) → ((𝐹f + 𝐺) “ {𝑦}) = 𝑧 ∈ ran 𝐺((𝐹 “ {(𝑦𝑧)}) ∩ (𝐺 “ {𝑧})))
5216adantr 483 . . . 4 ((𝜑𝑦 ∈ (ran (𝐹f + 𝐺) ∖ {0})) → ran 𝐺 ∈ Fin)
533ad2antrr 724 . . . . . . . 8 (((𝜑𝑦 ∈ (ran (𝐹f + 𝐺) ∖ {0})) ∧ 𝑧 ∈ ran 𝐺) → 𝐹 ∈ dom ∫1)
54 i1fmbf 24270 . . . . . . . 8 (𝐹 ∈ dom ∫1𝐹 ∈ MblFn)
5553, 54syl 17 . . . . . . 7 (((𝜑𝑦 ∈ (ran (𝐹f + 𝐺) ∖ {0})) ∧ 𝑧 ∈ ran 𝐺) → 𝐹 ∈ MblFn)
565ad2antrr 724 . . . . . . 7 (((𝜑𝑦 ∈ (ran (𝐹f + 𝐺) ∖ {0})) ∧ 𝑧 ∈ ran 𝐺) → 𝐹:ℝ⟶ℝ)
5712ad2antrr 724 . . . . . . . . . 10 (((𝜑𝑦 ∈ (ran (𝐹f + 𝐺) ∖ {0})) ∧ 𝑧 ∈ ran 𝐺) → (𝐹f + 𝐺):ℝ⟶ℝ)
5857frnd 6515 . . . . . . . . 9 (((𝜑𝑦 ∈ (ran (𝐹f + 𝐺) ∖ {0})) ∧ 𝑧 ∈ ran 𝐺) → ran (𝐹f + 𝐺) ⊆ ℝ)
59 eldifi 4102 . . . . . . . . . 10 (𝑦 ∈ (ran (𝐹f + 𝐺) ∖ {0}) → 𝑦 ∈ ran (𝐹f + 𝐺))
6059ad2antlr 725 . . . . . . . . 9 (((𝜑𝑦 ∈ (ran (𝐹f + 𝐺) ∖ {0})) ∧ 𝑧 ∈ ran 𝐺) → 𝑦 ∈ ran (𝐹f + 𝐺))
6158, 60sseldd 3967 . . . . . . . 8 (((𝜑𝑦 ∈ (ran (𝐹f + 𝐺) ∖ {0})) ∧ 𝑧 ∈ ran 𝐺) → 𝑦 ∈ ℝ)
628adantr 483 . . . . . . . . . 10 ((𝜑𝑦 ∈ (ran (𝐹f + 𝐺) ∖ {0})) → 𝐺:ℝ⟶ℝ)
6362frnd 6515 . . . . . . . . 9 ((𝜑𝑦 ∈ (ran (𝐹f + 𝐺) ∖ {0})) → ran 𝐺 ⊆ ℝ)
6463sselda 3966 . . . . . . . 8 (((𝜑𝑦 ∈ (ran (𝐹f + 𝐺) ∖ {0})) ∧ 𝑧 ∈ ran 𝐺) → 𝑧 ∈ ℝ)
6561, 64resubcld 11062 . . . . . . 7 (((𝜑𝑦 ∈ (ran (𝐹f + 𝐺) ∖ {0})) ∧ 𝑧 ∈ ran 𝐺) → (𝑦𝑧) ∈ ℝ)
66 mbfimasn 24227 . . . . . . 7 ((𝐹 ∈ MblFn ∧ 𝐹:ℝ⟶ℝ ∧ (𝑦𝑧) ∈ ℝ) → (𝐹 “ {(𝑦𝑧)}) ∈ dom vol)
6755, 56, 65, 66syl3anc 1367 . . . . . 6 (((𝜑𝑦 ∈ (ran (𝐹f + 𝐺) ∖ {0})) ∧ 𝑧 ∈ ran 𝐺) → (𝐹 “ {(𝑦𝑧)}) ∈ dom vol)
686ad2antrr 724 . . . . . . . 8 (((𝜑𝑦 ∈ (ran (𝐹f + 𝐺) ∖ {0})) ∧ 𝑧 ∈ ran 𝐺) → 𝐺 ∈ dom ∫1)
69 i1fmbf 24270 . . . . . . . 8 (𝐺 ∈ dom ∫1𝐺 ∈ MblFn)
7068, 69syl 17 . . . . . . 7 (((𝜑𝑦 ∈ (ran (𝐹f + 𝐺) ∖ {0})) ∧ 𝑧 ∈ ran 𝐺) → 𝐺 ∈ MblFn)
718ad2antrr 724 . . . . . . 7 (((𝜑𝑦 ∈ (ran (𝐹f + 𝐺) ∖ {0})) ∧ 𝑧 ∈ ran 𝐺) → 𝐺:ℝ⟶ℝ)
72 mbfimasn 24227 . . . . . . 7 ((𝐺 ∈ MblFn ∧ 𝐺:ℝ⟶ℝ ∧ 𝑧 ∈ ℝ) → (𝐺 “ {𝑧}) ∈ dom vol)
7370, 71, 64, 72syl3anc 1367 . . . . . 6 (((𝜑𝑦 ∈ (ran (𝐹f + 𝐺) ∖ {0})) ∧ 𝑧 ∈ ran 𝐺) → (𝐺 “ {𝑧}) ∈ dom vol)
74 inmbl 24137 . . . . . 6 (((𝐹 “ {(𝑦𝑧)}) ∈ dom vol ∧ (𝐺 “ {𝑧}) ∈ dom vol) → ((𝐹 “ {(𝑦𝑧)}) ∩ (𝐺 “ {𝑧})) ∈ dom vol)
7567, 73, 74syl2anc 586 . . . . 5 (((𝜑𝑦 ∈ (ran (𝐹f + 𝐺) ∖ {0})) ∧ 𝑧 ∈ ran 𝐺) → ((𝐹 “ {(𝑦𝑧)}) ∩ (𝐺 “ {𝑧})) ∈ dom vol)
7675ralrimiva 3182 . . . 4 ((𝜑𝑦 ∈ (ran (𝐹f + 𝐺) ∖ {0})) → ∀𝑧 ∈ ran 𝐺((𝐹 “ {(𝑦𝑧)}) ∩ (𝐺 “ {𝑧})) ∈ dom vol)
77 finiunmbl 24139 . . . 4 ((ran 𝐺 ∈ Fin ∧ ∀𝑧 ∈ ran 𝐺((𝐹 “ {(𝑦𝑧)}) ∩ (𝐺 “ {𝑧})) ∈ dom vol) → 𝑧 ∈ ran 𝐺((𝐹 “ {(𝑦𝑧)}) ∩ (𝐺 “ {𝑧})) ∈ dom vol)
7852, 76, 77syl2anc 586 . . 3 ((𝜑𝑦 ∈ (ran (𝐹f + 𝐺) ∖ {0})) → 𝑧 ∈ ran 𝐺((𝐹 “ {(𝑦𝑧)}) ∩ (𝐺 “ {𝑧})) ∈ dom vol)
7951, 78eqeltrd 2913 . 2 ((𝜑𝑦 ∈ (ran (𝐹f + 𝐺) ∖ {0})) → ((𝐹f + 𝐺) “ {𝑦}) ∈ dom vol)
80 mblvol 24125 . . . 4 (((𝐹f + 𝐺) “ {𝑦}) ∈ dom vol → (vol‘((𝐹f + 𝐺) “ {𝑦})) = (vol*‘((𝐹f + 𝐺) “ {𝑦})))
8179, 80syl 17 . . 3 ((𝜑𝑦 ∈ (ran (𝐹f + 𝐺) ∖ {0})) → (vol‘((𝐹f + 𝐺) “ {𝑦})) = (vol*‘((𝐹f + 𝐺) “ {𝑦})))
82 mblss 24126 . . . . 5 (((𝐹f + 𝐺) “ {𝑦}) ∈ dom vol → ((𝐹f + 𝐺) “ {𝑦}) ⊆ ℝ)
8379, 82syl 17 . . . 4 ((𝜑𝑦 ∈ (ran (𝐹f + 𝐺) ∖ {0})) → ((𝐹f + 𝐺) “ {𝑦}) ⊆ ℝ)
84 inss1 4204 . . . . . . . 8 ((𝐹 “ {(𝑦𝑧)}) ∩ (𝐺 “ {𝑧})) ⊆ (𝐹 “ {(𝑦𝑧)})
8567adantrr 715 . . . . . . . . 9 (((𝜑𝑦 ∈ (ran (𝐹f + 𝐺) ∖ {0})) ∧ (𝑧 ∈ ran 𝐺𝑧 = 0)) → (𝐹 “ {(𝑦𝑧)}) ∈ dom vol)
86 mblss 24126 . . . . . . . . 9 ((𝐹 “ {(𝑦𝑧)}) ∈ dom vol → (𝐹 “ {(𝑦𝑧)}) ⊆ ℝ)
8785, 86syl 17 . . . . . . . 8 (((𝜑𝑦 ∈ (ran (𝐹f + 𝐺) ∖ {0})) ∧ (𝑧 ∈ ran 𝐺𝑧 = 0)) → (𝐹 “ {(𝑦𝑧)}) ⊆ ℝ)
88 mblvol 24125 . . . . . . . . . 10 ((𝐹 “ {(𝑦𝑧)}) ∈ dom vol → (vol‘(𝐹 “ {(𝑦𝑧)})) = (vol*‘(𝐹 “ {(𝑦𝑧)})))
8985, 88syl 17 . . . . . . . . 9 (((𝜑𝑦 ∈ (ran (𝐹f + 𝐺) ∖ {0})) ∧ (𝑧 ∈ ran 𝐺𝑧 = 0)) → (vol‘(𝐹 “ {(𝑦𝑧)})) = (vol*‘(𝐹 “ {(𝑦𝑧)})))
90 simprr 771 . . . . . . . . . . . . . . 15 (((𝜑𝑦 ∈ (ran (𝐹f + 𝐺) ∖ {0})) ∧ (𝑧 ∈ ran 𝐺𝑧 = 0)) → 𝑧 = 0)
9190oveq2d 7166 . . . . . . . . . . . . . 14 (((𝜑𝑦 ∈ (ran (𝐹f + 𝐺) ∖ {0})) ∧ (𝑧 ∈ ran 𝐺𝑧 = 0)) → (𝑦𝑧) = (𝑦 − 0))
9249adantr 483 . . . . . . . . . . . . . . 15 (((𝜑𝑦 ∈ (ran (𝐹f + 𝐺) ∖ {0})) ∧ (𝑧 ∈ ran 𝐺𝑧 = 0)) → 𝑦 ∈ ℂ)
9392subid1d 10980 . . . . . . . . . . . . . 14 (((𝜑𝑦 ∈ (ran (𝐹f + 𝐺) ∖ {0})) ∧ (𝑧 ∈ ran 𝐺𝑧 = 0)) → (𝑦 − 0) = 𝑦)
9491, 93eqtrd 2856 . . . . . . . . . . . . 13 (((𝜑𝑦 ∈ (ran (𝐹f + 𝐺) ∖ {0})) ∧ (𝑧 ∈ ran 𝐺𝑧 = 0)) → (𝑦𝑧) = 𝑦)
9594sneqd 4572 . . . . . . . . . . . 12 (((𝜑𝑦 ∈ (ran (𝐹f + 𝐺) ∖ {0})) ∧ (𝑧 ∈ ran 𝐺𝑧 = 0)) → {(𝑦𝑧)} = {𝑦})
9695imaeq2d 5923 . . . . . . . . . . 11 (((𝜑𝑦 ∈ (ran (𝐹f + 𝐺) ∖ {0})) ∧ (𝑧 ∈ ran 𝐺𝑧 = 0)) → (𝐹 “ {(𝑦𝑧)}) = (𝐹 “ {𝑦}))
9796fveq2d 6668 . . . . . . . . . 10 (((𝜑𝑦 ∈ (ran (𝐹f + 𝐺) ∖ {0})) ∧ (𝑧 ∈ ran 𝐺𝑧 = 0)) → (vol‘(𝐹 “ {(𝑦𝑧)})) = (vol‘(𝐹 “ {𝑦})))
98 i1fima2sn 24275 . . . . . . . . . . . 12 ((𝐹 ∈ dom ∫1𝑦 ∈ (ran (𝐹f + 𝐺) ∖ {0})) → (vol‘(𝐹 “ {𝑦})) ∈ ℝ)
993, 98sylan 582 . . . . . . . . . . 11 ((𝜑𝑦 ∈ (ran (𝐹f + 𝐺) ∖ {0})) → (vol‘(𝐹 “ {𝑦})) ∈ ℝ)
10099adantr 483 . . . . . . . . . 10 (((𝜑𝑦 ∈ (ran (𝐹f + 𝐺) ∖ {0})) ∧ (𝑧 ∈ ran 𝐺𝑧 = 0)) → (vol‘(𝐹 “ {𝑦})) ∈ ℝ)
10197, 100eqeltrd 2913 . . . . . . . . 9 (((𝜑𝑦 ∈ (ran (𝐹f + 𝐺) ∖ {0})) ∧ (𝑧 ∈ ran 𝐺𝑧 = 0)) → (vol‘(𝐹 “ {(𝑦𝑧)})) ∈ ℝ)
10289, 101eqeltrrd 2914 . . . . . . . 8 (((𝜑𝑦 ∈ (ran (𝐹f + 𝐺) ∖ {0})) ∧ (𝑧 ∈ ran 𝐺𝑧 = 0)) → (vol*‘(𝐹 “ {(𝑦𝑧)})) ∈ ℝ)
103 ovolsscl 24081 . . . . . . . 8 ((((𝐹 “ {(𝑦𝑧)}) ∩ (𝐺 “ {𝑧})) ⊆ (𝐹 “ {(𝑦𝑧)}) ∧ (𝐹 “ {(𝑦𝑧)}) ⊆ ℝ ∧ (vol*‘(𝐹 “ {(𝑦𝑧)})) ∈ ℝ) → (vol*‘((𝐹 “ {(𝑦𝑧)}) ∩ (𝐺 “ {𝑧}))) ∈ ℝ)
10484, 87, 102, 103mp3an2i 1462 . . . . . . 7 (((𝜑𝑦 ∈ (ran (𝐹f + 𝐺) ∖ {0})) ∧ (𝑧 ∈ ran 𝐺𝑧 = 0)) → (vol*‘((𝐹 “ {(𝑦𝑧)}) ∩ (𝐺 “ {𝑧}))) ∈ ℝ)
105104expr 459 . . . . . 6 (((𝜑𝑦 ∈ (ran (𝐹f + 𝐺) ∖ {0})) ∧ 𝑧 ∈ ran 𝐺) → (𝑧 = 0 → (vol*‘((𝐹 “ {(𝑦𝑧)}) ∩ (𝐺 “ {𝑧}))) ∈ ℝ))
106 eldifsn 4712 . . . . . . . 8 (𝑧 ∈ (ran 𝐺 ∖ {0}) ↔ (𝑧 ∈ ran 𝐺𝑧 ≠ 0))
107 inss2 4205 . . . . . . . . 9 ((𝐹 “ {(𝑦𝑧)}) ∩ (𝐺 “ {𝑧})) ⊆ (𝐺 “ {𝑧})
108 eldifi 4102 . . . . . . . . . 10 (𝑧 ∈ (ran 𝐺 ∖ {0}) → 𝑧 ∈ ran 𝐺)
109 mblss 24126 . . . . . . . . . . 11 ((𝐺 “ {𝑧}) ∈ dom vol → (𝐺 “ {𝑧}) ⊆ ℝ)
11073, 109syl 17 . . . . . . . . . 10 (((𝜑𝑦 ∈ (ran (𝐹f + 𝐺) ∖ {0})) ∧ 𝑧 ∈ ran 𝐺) → (𝐺 “ {𝑧}) ⊆ ℝ)
111108, 110sylan2 594 . . . . . . . . 9 (((𝜑𝑦 ∈ (ran (𝐹f + 𝐺) ∖ {0})) ∧ 𝑧 ∈ (ran 𝐺 ∖ {0})) → (𝐺 “ {𝑧}) ⊆ ℝ)
112 i1fima 24273 . . . . . . . . . . . . 13 (𝐺 ∈ dom ∫1 → (𝐺 “ {𝑧}) ∈ dom vol)
1136, 112syl 17 . . . . . . . . . . . 12 (𝜑 → (𝐺 “ {𝑧}) ∈ dom vol)
114113ad2antrr 724 . . . . . . . . . . 11 (((𝜑𝑦 ∈ (ran (𝐹f + 𝐺) ∖ {0})) ∧ 𝑧 ∈ (ran 𝐺 ∖ {0})) → (𝐺 “ {𝑧}) ∈ dom vol)
115 mblvol 24125 . . . . . . . . . . 11 ((𝐺 “ {𝑧}) ∈ dom vol → (vol‘(𝐺 “ {𝑧})) = (vol*‘(𝐺 “ {𝑧})))
116114, 115syl 17 . . . . . . . . . 10 (((𝜑𝑦 ∈ (ran (𝐹f + 𝐺) ∖ {0})) ∧ 𝑧 ∈ (ran 𝐺 ∖ {0})) → (vol‘(𝐺 “ {𝑧})) = (vol*‘(𝐺 “ {𝑧})))
1176adantr 483 . . . . . . . . . . 11 ((𝜑𝑦 ∈ (ran (𝐹f + 𝐺) ∖ {0})) → 𝐺 ∈ dom ∫1)
118 i1fima2sn 24275 . . . . . . . . . . 11 ((𝐺 ∈ dom ∫1𝑧 ∈ (ran 𝐺 ∖ {0})) → (vol‘(𝐺 “ {𝑧})) ∈ ℝ)
119117, 118sylan 582 . . . . . . . . . 10 (((𝜑𝑦 ∈ (ran (𝐹f + 𝐺) ∖ {0})) ∧ 𝑧 ∈ (ran 𝐺 ∖ {0})) → (vol‘(𝐺 “ {𝑧})) ∈ ℝ)
120116, 119eqeltrrd 2914 . . . . . . . . 9 (((𝜑𝑦 ∈ (ran (𝐹f + 𝐺) ∖ {0})) ∧ 𝑧 ∈ (ran 𝐺 ∖ {0})) → (vol*‘(𝐺 “ {𝑧})) ∈ ℝ)
121 ovolsscl 24081 . . . . . . . . 9 ((((𝐹 “ {(𝑦𝑧)}) ∩ (𝐺 “ {𝑧})) ⊆ (𝐺 “ {𝑧}) ∧ (𝐺 “ {𝑧}) ⊆ ℝ ∧ (vol*‘(𝐺 “ {𝑧})) ∈ ℝ) → (vol*‘((𝐹 “ {(𝑦𝑧)}) ∩ (𝐺 “ {𝑧}))) ∈ ℝ)
122107, 111, 120, 121mp3an2i 1462 . . . . . . . 8 (((𝜑𝑦 ∈ (ran (𝐹f + 𝐺) ∖ {0})) ∧ 𝑧 ∈ (ran 𝐺 ∖ {0})) → (vol*‘((𝐹 “ {(𝑦𝑧)}) ∩ (𝐺 “ {𝑧}))) ∈ ℝ)
123106, 122sylan2br 596 . . . . . . 7 (((𝜑𝑦 ∈ (ran (𝐹f + 𝐺) ∖ {0})) ∧ (𝑧 ∈ ran 𝐺𝑧 ≠ 0)) → (vol*‘((𝐹 “ {(𝑦𝑧)}) ∩ (𝐺 “ {𝑧}))) ∈ ℝ)
124123expr 459 . . . . . 6 (((𝜑𝑦 ∈ (ran (𝐹f + 𝐺) ∖ {0})) ∧ 𝑧 ∈ ran 𝐺) → (𝑧 ≠ 0 → (vol*‘((𝐹 “ {(𝑦𝑧)}) ∩ (𝐺 “ {𝑧}))) ∈ ℝ))
125105, 124pm2.61dne 3103 . . . . 5 (((𝜑𝑦 ∈ (ran (𝐹f + 𝐺) ∖ {0})) ∧ 𝑧 ∈ ran 𝐺) → (vol*‘((𝐹 “ {(𝑦𝑧)}) ∩ (𝐺 “ {𝑧}))) ∈ ℝ)
12652, 125fsumrecl 15085 . . . 4 ((𝜑𝑦 ∈ (ran (𝐹f + 𝐺) ∖ {0})) → Σ𝑧 ∈ ran 𝐺(vol*‘((𝐹 “ {(𝑦𝑧)}) ∩ (𝐺 “ {𝑧}))) ∈ ℝ)
12751fveq2d 6668 . . . . 5 ((𝜑𝑦 ∈ (ran (𝐹f + 𝐺) ∖ {0})) → (vol*‘((𝐹f + 𝐺) “ {𝑦})) = (vol*‘ 𝑧 ∈ ran 𝐺((𝐹 “ {(𝑦𝑧)}) ∩ (𝐺 “ {𝑧}))))
128107, 110sstrid 3977 . . . . . . . 8 (((𝜑𝑦 ∈ (ran (𝐹f + 𝐺) ∖ {0})) ∧ 𝑧 ∈ ran 𝐺) → ((𝐹 “ {(𝑦𝑧)}) ∩ (𝐺 “ {𝑧})) ⊆ ℝ)
129128, 125jca 514 . . . . . . 7 (((𝜑𝑦 ∈ (ran (𝐹f + 𝐺) ∖ {0})) ∧ 𝑧 ∈ ran 𝐺) → (((𝐹 “ {(𝑦𝑧)}) ∩ (𝐺 “ {𝑧})) ⊆ ℝ ∧ (vol*‘((𝐹 “ {(𝑦𝑧)}) ∩ (𝐺 “ {𝑧}))) ∈ ℝ))
130129ralrimiva 3182 . . . . . 6 ((𝜑𝑦 ∈ (ran (𝐹f + 𝐺) ∖ {0})) → ∀𝑧 ∈ ran 𝐺(((𝐹 “ {(𝑦𝑧)}) ∩ (𝐺 “ {𝑧})) ⊆ ℝ ∧ (vol*‘((𝐹 “ {(𝑦𝑧)}) ∩ (𝐺 “ {𝑧}))) ∈ ℝ))
131 ovolfiniun 24096 . . . . . 6 ((ran 𝐺 ∈ Fin ∧ ∀𝑧 ∈ ran 𝐺(((𝐹 “ {(𝑦𝑧)}) ∩ (𝐺 “ {𝑧})) ⊆ ℝ ∧ (vol*‘((𝐹 “ {(𝑦𝑧)}) ∩ (𝐺 “ {𝑧}))) ∈ ℝ)) → (vol*‘ 𝑧 ∈ ran 𝐺((𝐹 “ {(𝑦𝑧)}) ∩ (𝐺 “ {𝑧}))) ≤ Σ𝑧 ∈ ran 𝐺(vol*‘((𝐹 “ {(𝑦𝑧)}) ∩ (𝐺 “ {𝑧}))))
13252, 130, 131syl2anc 586 . . . . 5 ((𝜑𝑦 ∈ (ran (𝐹f + 𝐺) ∖ {0})) → (vol*‘ 𝑧 ∈ ran 𝐺((𝐹 “ {(𝑦𝑧)}) ∩ (𝐺 “ {𝑧}))) ≤ Σ𝑧 ∈ ran 𝐺(vol*‘((𝐹 “ {(𝑦𝑧)}) ∩ (𝐺 “ {𝑧}))))
133127, 132eqbrtrd 5080 . . . 4 ((𝜑𝑦 ∈ (ran (𝐹f + 𝐺) ∖ {0})) → (vol*‘((𝐹f + 𝐺) “ {𝑦})) ≤ Σ𝑧 ∈ ran 𝐺(vol*‘((𝐹 “ {(𝑦𝑧)}) ∩ (𝐺 “ {𝑧}))))
134 ovollecl 24078 . . . 4 ((((𝐹f + 𝐺) “ {𝑦}) ⊆ ℝ ∧ Σ𝑧 ∈ ran 𝐺(vol*‘((𝐹 “ {(𝑦𝑧)}) ∩ (𝐺 “ {𝑧}))) ∈ ℝ ∧ (vol*‘((𝐹f + 𝐺) “ {𝑦})) ≤ Σ𝑧 ∈ ran 𝐺(vol*‘((𝐹 “ {(𝑦𝑧)}) ∩ (𝐺 “ {𝑧})))) → (vol*‘((𝐹f + 𝐺) “ {𝑦})) ∈ ℝ)
13583, 126, 133, 134syl3anc 1367 . . 3 ((𝜑𝑦 ∈ (ran (𝐹f + 𝐺) ∖ {0})) → (vol*‘((𝐹f + 𝐺) “ {𝑦})) ∈ ℝ)
13681, 135eqeltrd 2913 . 2 ((𝜑𝑦 ∈ (ran (𝐹f + 𝐺) ∖ {0})) → (vol‘((𝐹f + 𝐺) “ {𝑦})) ∈ ℝ)
13712, 45, 79, 136i1fd 24276 1 (𝜑 → (𝐹f + 𝐺) ∈ dom ∫1)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 398   = wceq 1533  wcel 2110  {cab 2799  wne 3016  wral 3138  wrex 3139  Vcvv 3494  cdif 3932  cin 3934  wss 3935  {csn 4560   ciun 4911   class class class wbr 5058   × cxp 5547  ccnv 5548  dom cdm 5549  ran crn 5550  cima 5552   Fn wfn 6344  wf 6345  ontowfo 6347  cfv 6349  (class class class)co 7150  cmpo 7152  f cof 7401  Fincfn 8503  cc 10529  cr 10530  0cc0 10531   + caddc 10534  cle 10670  cmin 10864  Σcsu 15036  vol*covol 24057  volcvol 24058  MblFncmbf 24209  1citg1 24210
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1907  ax-6 1966  ax-7 2011  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2157  ax-12 2173  ax-ext 2793  ax-rep 5182  ax-sep 5195  ax-nul 5202  ax-pow 5258  ax-pr 5321  ax-un 7455  ax-inf2 9098  ax-cnex 10587  ax-resscn 10588  ax-1cn 10589  ax-icn 10590  ax-addcl 10591  ax-addrcl 10592  ax-mulcl 10593  ax-mulrcl 10594  ax-mulcom 10595  ax-addass 10596  ax-mulass 10597  ax-distr 10598  ax-i2m1 10599  ax-1ne0 10600  ax-1rid 10601  ax-rnegex 10602  ax-rrecex 10603  ax-cnre 10604  ax-pre-lttri 10605  ax-pre-lttrn 10606  ax-pre-ltadd 10607  ax-pre-mulgt0 10608  ax-pre-sup 10609
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1536  df-fal 1546  df-ex 1777  df-nf 1781  df-sb 2066  df-mo 2618  df-eu 2650  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-nel 3124  df-ral 3143  df-rex 3144  df-reu 3145  df-rmo 3146  df-rab 3147  df-v 3496  df-sbc 3772  df-csb 3883  df-dif 3938  df-un 3940  df-in 3942  df-ss 3951  df-pss 3953  df-nul 4291  df-if 4467  df-pw 4540  df-sn 4561  df-pr 4563  df-tp 4565  df-op 4567  df-uni 4832  df-int 4869  df-iun 4913  df-br 5059  df-opab 5121  df-mpt 5139  df-tr 5165  df-id 5454  df-eprel 5459  df-po 5468  df-so 5469  df-fr 5508  df-se 5509  df-we 5510  df-xp 5555  df-rel 5556  df-cnv 5557  df-co 5558  df-dm 5559  df-rn 5560  df-res 5561  df-ima 5562  df-pred 6142  df-ord 6188  df-on 6189  df-lim 6190  df-suc 6191  df-iota 6308  df-fun 6351  df-fn 6352  df-f 6353  df-f1 6354  df-fo 6355  df-f1o 6356  df-fv 6357  df-isom 6358  df-riota 7108  df-ov 7153  df-oprab 7154  df-mpo 7155  df-of 7403  df-om 7575  df-1st 7683  df-2nd 7684  df-wrecs 7941  df-recs 8002  df-rdg 8040  df-1o 8096  df-2o 8097  df-oadd 8100  df-er 8283  df-map 8402  df-pm 8403  df-en 8504  df-dom 8505  df-sdom 8506  df-fin 8507  df-sup 8900  df-inf 8901  df-oi 8968  df-dju 9324  df-card 9362  df-pnf 10671  df-mnf 10672  df-xr 10673  df-ltxr 10674  df-le 10675  df-sub 10866  df-neg 10867  df-div 11292  df-nn 11633  df-2 11694  df-3 11695  df-n0 11892  df-z 11976  df-uz 12238  df-q 12343  df-rp 12384  df-xadd 12502  df-ioo 12736  df-ico 12738  df-icc 12739  df-fz 12887  df-fzo 13028  df-fl 13156  df-seq 13364  df-exp 13424  df-hash 13685  df-cj 14452  df-re 14453  df-im 14454  df-sqrt 14588  df-abs 14589  df-clim 14839  df-sum 15037  df-xmet 20532  df-met 20533  df-ovol 24059  df-vol 24060  df-mbf 24214  df-itg1 24215
This theorem is referenced by:  itg1addlem4  24294  i1fsub  24303  itg2splitlem  24343  itg2split  24344  itg2addlem  24353  itg2addnc  34940  ftc1anclem3  34963  ftc1anclem5  34965  ftc1anclem8  34968
  Copyright terms: Public domain W3C validator