MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  i1faddlem Structured version   Visualization version   GIF version

Theorem i1faddlem 24297
Description: Decompose the preimage of a sum. (Contributed by Mario Carneiro, 19-Jun-2014.)
Hypotheses
Ref Expression
i1fadd.1 (𝜑𝐹 ∈ dom ∫1)
i1fadd.2 (𝜑𝐺 ∈ dom ∫1)
Assertion
Ref Expression
i1faddlem ((𝜑𝐴 ∈ ℂ) → ((𝐹f + 𝐺) “ {𝐴}) = 𝑦 ∈ ran 𝐺((𝐹 “ {(𝐴𝑦)}) ∩ (𝐺 “ {𝑦})))
Distinct variable groups:   𝑦,𝐴   𝑦,𝐹   𝑦,𝐺   𝜑,𝑦

Proof of Theorem i1faddlem
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 i1fadd.1 . . . . . . . . 9 (𝜑𝐹 ∈ dom ∫1)
2 i1ff 24280 . . . . . . . . 9 (𝐹 ∈ dom ∫1𝐹:ℝ⟶ℝ)
31, 2syl 17 . . . . . . . 8 (𝜑𝐹:ℝ⟶ℝ)
43ffnd 6518 . . . . . . 7 (𝜑𝐹 Fn ℝ)
5 i1fadd.2 . . . . . . . . 9 (𝜑𝐺 ∈ dom ∫1)
6 i1ff 24280 . . . . . . . . 9 (𝐺 ∈ dom ∫1𝐺:ℝ⟶ℝ)
75, 6syl 17 . . . . . . . 8 (𝜑𝐺:ℝ⟶ℝ)
87ffnd 6518 . . . . . . 7 (𝜑𝐺 Fn ℝ)
9 reex 10631 . . . . . . . 8 ℝ ∈ V
109a1i 11 . . . . . . 7 (𝜑 → ℝ ∈ V)
11 inidm 4198 . . . . . . 7 (ℝ ∩ ℝ) = ℝ
124, 8, 10, 10, 11offn 7423 . . . . . 6 (𝜑 → (𝐹f + 𝐺) Fn ℝ)
1312adantr 483 . . . . 5 ((𝜑𝐴 ∈ ℂ) → (𝐹f + 𝐺) Fn ℝ)
14 fniniseg 6833 . . . . 5 ((𝐹f + 𝐺) Fn ℝ → (𝑧 ∈ ((𝐹f + 𝐺) “ {𝐴}) ↔ (𝑧 ∈ ℝ ∧ ((𝐹f + 𝐺)‘𝑧) = 𝐴)))
1513, 14syl 17 . . . 4 ((𝜑𝐴 ∈ ℂ) → (𝑧 ∈ ((𝐹f + 𝐺) “ {𝐴}) ↔ (𝑧 ∈ ℝ ∧ ((𝐹f + 𝐺)‘𝑧) = 𝐴)))
168ad2antrr 724 . . . . . . . 8 (((𝜑𝐴 ∈ ℂ) ∧ (𝑧 ∈ ℝ ∧ ((𝐹f + 𝐺)‘𝑧) = 𝐴)) → 𝐺 Fn ℝ)
17 simprl 769 . . . . . . . 8 (((𝜑𝐴 ∈ ℂ) ∧ (𝑧 ∈ ℝ ∧ ((𝐹f + 𝐺)‘𝑧) = 𝐴)) → 𝑧 ∈ ℝ)
18 fnfvelrn 6851 . . . . . . . 8 ((𝐺 Fn ℝ ∧ 𝑧 ∈ ℝ) → (𝐺𝑧) ∈ ran 𝐺)
1916, 17, 18syl2anc 586 . . . . . . 7 (((𝜑𝐴 ∈ ℂ) ∧ (𝑧 ∈ ℝ ∧ ((𝐹f + 𝐺)‘𝑧) = 𝐴)) → (𝐺𝑧) ∈ ran 𝐺)
20 simprr 771 . . . . . . . . . . . 12 (((𝜑𝐴 ∈ ℂ) ∧ (𝑧 ∈ ℝ ∧ ((𝐹f + 𝐺)‘𝑧) = 𝐴)) → ((𝐹f + 𝐺)‘𝑧) = 𝐴)
21 eqidd 2825 . . . . . . . . . . . . . 14 ((𝜑𝑧 ∈ ℝ) → (𝐹𝑧) = (𝐹𝑧))
22 eqidd 2825 . . . . . . . . . . . . . 14 ((𝜑𝑧 ∈ ℝ) → (𝐺𝑧) = (𝐺𝑧))
234, 8, 10, 10, 11, 21, 22ofval 7421 . . . . . . . . . . . . 13 ((𝜑𝑧 ∈ ℝ) → ((𝐹f + 𝐺)‘𝑧) = ((𝐹𝑧) + (𝐺𝑧)))
2423ad2ant2r 745 . . . . . . . . . . . 12 (((𝜑𝐴 ∈ ℂ) ∧ (𝑧 ∈ ℝ ∧ ((𝐹f + 𝐺)‘𝑧) = 𝐴)) → ((𝐹f + 𝐺)‘𝑧) = ((𝐹𝑧) + (𝐺𝑧)))
2520, 24eqtr3d 2861 . . . . . . . . . . 11 (((𝜑𝐴 ∈ ℂ) ∧ (𝑧 ∈ ℝ ∧ ((𝐹f + 𝐺)‘𝑧) = 𝐴)) → 𝐴 = ((𝐹𝑧) + (𝐺𝑧)))
2625oveq1d 7174 . . . . . . . . . 10 (((𝜑𝐴 ∈ ℂ) ∧ (𝑧 ∈ ℝ ∧ ((𝐹f + 𝐺)‘𝑧) = 𝐴)) → (𝐴 − (𝐺𝑧)) = (((𝐹𝑧) + (𝐺𝑧)) − (𝐺𝑧)))
27 ax-resscn 10597 . . . . . . . . . . . . . 14 ℝ ⊆ ℂ
28 fss 6530 . . . . . . . . . . . . . 14 ((𝐹:ℝ⟶ℝ ∧ ℝ ⊆ ℂ) → 𝐹:ℝ⟶ℂ)
293, 27, 28sylancl 588 . . . . . . . . . . . . 13 (𝜑𝐹:ℝ⟶ℂ)
3029ad2antrr 724 . . . . . . . . . . . 12 (((𝜑𝐴 ∈ ℂ) ∧ (𝑧 ∈ ℝ ∧ ((𝐹f + 𝐺)‘𝑧) = 𝐴)) → 𝐹:ℝ⟶ℂ)
3130, 17ffvelrnd 6855 . . . . . . . . . . 11 (((𝜑𝐴 ∈ ℂ) ∧ (𝑧 ∈ ℝ ∧ ((𝐹f + 𝐺)‘𝑧) = 𝐴)) → (𝐹𝑧) ∈ ℂ)
32 fss 6530 . . . . . . . . . . . . . 14 ((𝐺:ℝ⟶ℝ ∧ ℝ ⊆ ℂ) → 𝐺:ℝ⟶ℂ)
337, 27, 32sylancl 588 . . . . . . . . . . . . 13 (𝜑𝐺:ℝ⟶ℂ)
3433ad2antrr 724 . . . . . . . . . . . 12 (((𝜑𝐴 ∈ ℂ) ∧ (𝑧 ∈ ℝ ∧ ((𝐹f + 𝐺)‘𝑧) = 𝐴)) → 𝐺:ℝ⟶ℂ)
3534, 17ffvelrnd 6855 . . . . . . . . . . 11 (((𝜑𝐴 ∈ ℂ) ∧ (𝑧 ∈ ℝ ∧ ((𝐹f + 𝐺)‘𝑧) = 𝐴)) → (𝐺𝑧) ∈ ℂ)
3631, 35pncand 11001 . . . . . . . . . 10 (((𝜑𝐴 ∈ ℂ) ∧ (𝑧 ∈ ℝ ∧ ((𝐹f + 𝐺)‘𝑧) = 𝐴)) → (((𝐹𝑧) + (𝐺𝑧)) − (𝐺𝑧)) = (𝐹𝑧))
3726, 36eqtr2d 2860 . . . . . . . . 9 (((𝜑𝐴 ∈ ℂ) ∧ (𝑧 ∈ ℝ ∧ ((𝐹f + 𝐺)‘𝑧) = 𝐴)) → (𝐹𝑧) = (𝐴 − (𝐺𝑧)))
384ad2antrr 724 . . . . . . . . . 10 (((𝜑𝐴 ∈ ℂ) ∧ (𝑧 ∈ ℝ ∧ ((𝐹f + 𝐺)‘𝑧) = 𝐴)) → 𝐹 Fn ℝ)
39 fniniseg 6833 . . . . . . . . . 10 (𝐹 Fn ℝ → (𝑧 ∈ (𝐹 “ {(𝐴 − (𝐺𝑧))}) ↔ (𝑧 ∈ ℝ ∧ (𝐹𝑧) = (𝐴 − (𝐺𝑧)))))
4038, 39syl 17 . . . . . . . . 9 (((𝜑𝐴 ∈ ℂ) ∧ (𝑧 ∈ ℝ ∧ ((𝐹f + 𝐺)‘𝑧) = 𝐴)) → (𝑧 ∈ (𝐹 “ {(𝐴 − (𝐺𝑧))}) ↔ (𝑧 ∈ ℝ ∧ (𝐹𝑧) = (𝐴 − (𝐺𝑧)))))
4117, 37, 40mpbir2and 711 . . . . . . . 8 (((𝜑𝐴 ∈ ℂ) ∧ (𝑧 ∈ ℝ ∧ ((𝐹f + 𝐺)‘𝑧) = 𝐴)) → 𝑧 ∈ (𝐹 “ {(𝐴 − (𝐺𝑧))}))
42 eqidd 2825 . . . . . . . . 9 (((𝜑𝐴 ∈ ℂ) ∧ (𝑧 ∈ ℝ ∧ ((𝐹f + 𝐺)‘𝑧) = 𝐴)) → (𝐺𝑧) = (𝐺𝑧))
43 fniniseg 6833 . . . . . . . . . 10 (𝐺 Fn ℝ → (𝑧 ∈ (𝐺 “ {(𝐺𝑧)}) ↔ (𝑧 ∈ ℝ ∧ (𝐺𝑧) = (𝐺𝑧))))
4416, 43syl 17 . . . . . . . . 9 (((𝜑𝐴 ∈ ℂ) ∧ (𝑧 ∈ ℝ ∧ ((𝐹f + 𝐺)‘𝑧) = 𝐴)) → (𝑧 ∈ (𝐺 “ {(𝐺𝑧)}) ↔ (𝑧 ∈ ℝ ∧ (𝐺𝑧) = (𝐺𝑧))))
4517, 42, 44mpbir2and 711 . . . . . . . 8 (((𝜑𝐴 ∈ ℂ) ∧ (𝑧 ∈ ℝ ∧ ((𝐹f + 𝐺)‘𝑧) = 𝐴)) → 𝑧 ∈ (𝐺 “ {(𝐺𝑧)}))
4641, 45elind 4174 . . . . . . 7 (((𝜑𝐴 ∈ ℂ) ∧ (𝑧 ∈ ℝ ∧ ((𝐹f + 𝐺)‘𝑧) = 𝐴)) → 𝑧 ∈ ((𝐹 “ {(𝐴 − (𝐺𝑧))}) ∩ (𝐺 “ {(𝐺𝑧)})))
47 oveq2 7167 . . . . . . . . . . . 12 (𝑦 = (𝐺𝑧) → (𝐴𝑦) = (𝐴 − (𝐺𝑧)))
4847sneqd 4582 . . . . . . . . . . 11 (𝑦 = (𝐺𝑧) → {(𝐴𝑦)} = {(𝐴 − (𝐺𝑧))})
4948imaeq2d 5932 . . . . . . . . . 10 (𝑦 = (𝐺𝑧) → (𝐹 “ {(𝐴𝑦)}) = (𝐹 “ {(𝐴 − (𝐺𝑧))}))
50 sneq 4580 . . . . . . . . . . 11 (𝑦 = (𝐺𝑧) → {𝑦} = {(𝐺𝑧)})
5150imaeq2d 5932 . . . . . . . . . 10 (𝑦 = (𝐺𝑧) → (𝐺 “ {𝑦}) = (𝐺 “ {(𝐺𝑧)}))
5249, 51ineq12d 4193 . . . . . . . . 9 (𝑦 = (𝐺𝑧) → ((𝐹 “ {(𝐴𝑦)}) ∩ (𝐺 “ {𝑦})) = ((𝐹 “ {(𝐴 − (𝐺𝑧))}) ∩ (𝐺 “ {(𝐺𝑧)})))
5352eleq2d 2901 . . . . . . . 8 (𝑦 = (𝐺𝑧) → (𝑧 ∈ ((𝐹 “ {(𝐴𝑦)}) ∩ (𝐺 “ {𝑦})) ↔ 𝑧 ∈ ((𝐹 “ {(𝐴 − (𝐺𝑧))}) ∩ (𝐺 “ {(𝐺𝑧)}))))
5453rspcev 3626 . . . . . . 7 (((𝐺𝑧) ∈ ran 𝐺𝑧 ∈ ((𝐹 “ {(𝐴 − (𝐺𝑧))}) ∩ (𝐺 “ {(𝐺𝑧)}))) → ∃𝑦 ∈ ran 𝐺 𝑧 ∈ ((𝐹 “ {(𝐴𝑦)}) ∩ (𝐺 “ {𝑦})))
5519, 46, 54syl2anc 586 . . . . . 6 (((𝜑𝐴 ∈ ℂ) ∧ (𝑧 ∈ ℝ ∧ ((𝐹f + 𝐺)‘𝑧) = 𝐴)) → ∃𝑦 ∈ ran 𝐺 𝑧 ∈ ((𝐹 “ {(𝐴𝑦)}) ∩ (𝐺 “ {𝑦})))
5655ex 415 . . . . 5 ((𝜑𝐴 ∈ ℂ) → ((𝑧 ∈ ℝ ∧ ((𝐹f + 𝐺)‘𝑧) = 𝐴) → ∃𝑦 ∈ ran 𝐺 𝑧 ∈ ((𝐹 “ {(𝐴𝑦)}) ∩ (𝐺 “ {𝑦}))))
57 elin 4172 . . . . . . 7 (𝑧 ∈ ((𝐹 “ {(𝐴𝑦)}) ∩ (𝐺 “ {𝑦})) ↔ (𝑧 ∈ (𝐹 “ {(𝐴𝑦)}) ∧ 𝑧 ∈ (𝐺 “ {𝑦})))
584adantr 483 . . . . . . . . . 10 ((𝜑𝐴 ∈ ℂ) → 𝐹 Fn ℝ)
59 fniniseg 6833 . . . . . . . . . 10 (𝐹 Fn ℝ → (𝑧 ∈ (𝐹 “ {(𝐴𝑦)}) ↔ (𝑧 ∈ ℝ ∧ (𝐹𝑧) = (𝐴𝑦))))
6058, 59syl 17 . . . . . . . . 9 ((𝜑𝐴 ∈ ℂ) → (𝑧 ∈ (𝐹 “ {(𝐴𝑦)}) ↔ (𝑧 ∈ ℝ ∧ (𝐹𝑧) = (𝐴𝑦))))
618adantr 483 . . . . . . . . . 10 ((𝜑𝐴 ∈ ℂ) → 𝐺 Fn ℝ)
62 fniniseg 6833 . . . . . . . . . 10 (𝐺 Fn ℝ → (𝑧 ∈ (𝐺 “ {𝑦}) ↔ (𝑧 ∈ ℝ ∧ (𝐺𝑧) = 𝑦)))
6361, 62syl 17 . . . . . . . . 9 ((𝜑𝐴 ∈ ℂ) → (𝑧 ∈ (𝐺 “ {𝑦}) ↔ (𝑧 ∈ ℝ ∧ (𝐺𝑧) = 𝑦)))
6460, 63anbi12d 632 . . . . . . . 8 ((𝜑𝐴 ∈ ℂ) → ((𝑧 ∈ (𝐹 “ {(𝐴𝑦)}) ∧ 𝑧 ∈ (𝐺 “ {𝑦})) ↔ ((𝑧 ∈ ℝ ∧ (𝐹𝑧) = (𝐴𝑦)) ∧ (𝑧 ∈ ℝ ∧ (𝐺𝑧) = 𝑦))))
65 anandi 674 . . . . . . . . 9 ((𝑧 ∈ ℝ ∧ ((𝐹𝑧) = (𝐴𝑦) ∧ (𝐺𝑧) = 𝑦)) ↔ ((𝑧 ∈ ℝ ∧ (𝐹𝑧) = (𝐴𝑦)) ∧ (𝑧 ∈ ℝ ∧ (𝐺𝑧) = 𝑦)))
66 simprl 769 . . . . . . . . . . 11 (((𝜑𝐴 ∈ ℂ) ∧ (𝑧 ∈ ℝ ∧ ((𝐹𝑧) = (𝐴𝑦) ∧ (𝐺𝑧) = 𝑦))) → 𝑧 ∈ ℝ)
6723ad2ant2r 745 . . . . . . . . . . . 12 (((𝜑𝐴 ∈ ℂ) ∧ (𝑧 ∈ ℝ ∧ ((𝐹𝑧) = (𝐴𝑦) ∧ (𝐺𝑧) = 𝑦))) → ((𝐹f + 𝐺)‘𝑧) = ((𝐹𝑧) + (𝐺𝑧)))
68 simprrl 779 . . . . . . . . . . . . 13 (((𝜑𝐴 ∈ ℂ) ∧ (𝑧 ∈ ℝ ∧ ((𝐹𝑧) = (𝐴𝑦) ∧ (𝐺𝑧) = 𝑦))) → (𝐹𝑧) = (𝐴𝑦))
69 simprrr 780 . . . . . . . . . . . . 13 (((𝜑𝐴 ∈ ℂ) ∧ (𝑧 ∈ ℝ ∧ ((𝐹𝑧) = (𝐴𝑦) ∧ (𝐺𝑧) = 𝑦))) → (𝐺𝑧) = 𝑦)
7068, 69oveq12d 7177 . . . . . . . . . . . 12 (((𝜑𝐴 ∈ ℂ) ∧ (𝑧 ∈ ℝ ∧ ((𝐹𝑧) = (𝐴𝑦) ∧ (𝐺𝑧) = 𝑦))) → ((𝐹𝑧) + (𝐺𝑧)) = ((𝐴𝑦) + 𝑦))
71 simplr 767 . . . . . . . . . . . . 13 (((𝜑𝐴 ∈ ℂ) ∧ (𝑧 ∈ ℝ ∧ ((𝐹𝑧) = (𝐴𝑦) ∧ (𝐺𝑧) = 𝑦))) → 𝐴 ∈ ℂ)
7233ad2antrr 724 . . . . . . . . . . . . . . 15 (((𝜑𝐴 ∈ ℂ) ∧ (𝑧 ∈ ℝ ∧ ((𝐹𝑧) = (𝐴𝑦) ∧ (𝐺𝑧) = 𝑦))) → 𝐺:ℝ⟶ℂ)
7372, 66ffvelrnd 6855 . . . . . . . . . . . . . 14 (((𝜑𝐴 ∈ ℂ) ∧ (𝑧 ∈ ℝ ∧ ((𝐹𝑧) = (𝐴𝑦) ∧ (𝐺𝑧) = 𝑦))) → (𝐺𝑧) ∈ ℂ)
7469, 73eqeltrrd 2917 . . . . . . . . . . . . 13 (((𝜑𝐴 ∈ ℂ) ∧ (𝑧 ∈ ℝ ∧ ((𝐹𝑧) = (𝐴𝑦) ∧ (𝐺𝑧) = 𝑦))) → 𝑦 ∈ ℂ)
7571, 74npcand 11004 . . . . . . . . . . . 12 (((𝜑𝐴 ∈ ℂ) ∧ (𝑧 ∈ ℝ ∧ ((𝐹𝑧) = (𝐴𝑦) ∧ (𝐺𝑧) = 𝑦))) → ((𝐴𝑦) + 𝑦) = 𝐴)
7667, 70, 753eqtrd 2863 . . . . . . . . . . 11 (((𝜑𝐴 ∈ ℂ) ∧ (𝑧 ∈ ℝ ∧ ((𝐹𝑧) = (𝐴𝑦) ∧ (𝐺𝑧) = 𝑦))) → ((𝐹f + 𝐺)‘𝑧) = 𝐴)
7766, 76jca 514 . . . . . . . . . 10 (((𝜑𝐴 ∈ ℂ) ∧ (𝑧 ∈ ℝ ∧ ((𝐹𝑧) = (𝐴𝑦) ∧ (𝐺𝑧) = 𝑦))) → (𝑧 ∈ ℝ ∧ ((𝐹f + 𝐺)‘𝑧) = 𝐴))
7877ex 415 . . . . . . . . 9 ((𝜑𝐴 ∈ ℂ) → ((𝑧 ∈ ℝ ∧ ((𝐹𝑧) = (𝐴𝑦) ∧ (𝐺𝑧) = 𝑦)) → (𝑧 ∈ ℝ ∧ ((𝐹f + 𝐺)‘𝑧) = 𝐴)))
7965, 78syl5bir 245 . . . . . . . 8 ((𝜑𝐴 ∈ ℂ) → (((𝑧 ∈ ℝ ∧ (𝐹𝑧) = (𝐴𝑦)) ∧ (𝑧 ∈ ℝ ∧ (𝐺𝑧) = 𝑦)) → (𝑧 ∈ ℝ ∧ ((𝐹f + 𝐺)‘𝑧) = 𝐴)))
8064, 79sylbid 242 . . . . . . 7 ((𝜑𝐴 ∈ ℂ) → ((𝑧 ∈ (𝐹 “ {(𝐴𝑦)}) ∧ 𝑧 ∈ (𝐺 “ {𝑦})) → (𝑧 ∈ ℝ ∧ ((𝐹f + 𝐺)‘𝑧) = 𝐴)))
8157, 80syl5bi 244 . . . . . 6 ((𝜑𝐴 ∈ ℂ) → (𝑧 ∈ ((𝐹 “ {(𝐴𝑦)}) ∩ (𝐺 “ {𝑦})) → (𝑧 ∈ ℝ ∧ ((𝐹f + 𝐺)‘𝑧) = 𝐴)))
8281rexlimdvw 3293 . . . . 5 ((𝜑𝐴 ∈ ℂ) → (∃𝑦 ∈ ran 𝐺 𝑧 ∈ ((𝐹 “ {(𝐴𝑦)}) ∩ (𝐺 “ {𝑦})) → (𝑧 ∈ ℝ ∧ ((𝐹f + 𝐺)‘𝑧) = 𝐴)))
8356, 82impbid 214 . . . 4 ((𝜑𝐴 ∈ ℂ) → ((𝑧 ∈ ℝ ∧ ((𝐹f + 𝐺)‘𝑧) = 𝐴) ↔ ∃𝑦 ∈ ran 𝐺 𝑧 ∈ ((𝐹 “ {(𝐴𝑦)}) ∩ (𝐺 “ {𝑦}))))
8415, 83bitrd 281 . . 3 ((𝜑𝐴 ∈ ℂ) → (𝑧 ∈ ((𝐹f + 𝐺) “ {𝐴}) ↔ ∃𝑦 ∈ ran 𝐺 𝑧 ∈ ((𝐹 “ {(𝐴𝑦)}) ∩ (𝐺 “ {𝑦}))))
85 eliun 4926 . . 3 (𝑧 𝑦 ∈ ran 𝐺((𝐹 “ {(𝐴𝑦)}) ∩ (𝐺 “ {𝑦})) ↔ ∃𝑦 ∈ ran 𝐺 𝑧 ∈ ((𝐹 “ {(𝐴𝑦)}) ∩ (𝐺 “ {𝑦})))
8684, 85syl6bbr 291 . 2 ((𝜑𝐴 ∈ ℂ) → (𝑧 ∈ ((𝐹f + 𝐺) “ {𝐴}) ↔ 𝑧 𝑦 ∈ ran 𝐺((𝐹 “ {(𝐴𝑦)}) ∩ (𝐺 “ {𝑦}))))
8786eqrdv 2822 1 ((𝜑𝐴 ∈ ℂ) → ((𝐹f + 𝐺) “ {𝐴}) = 𝑦 ∈ ran 𝐺((𝐹 “ {(𝐴𝑦)}) ∩ (𝐺 “ {𝑦})))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wa 398   = wceq 1536  wcel 2113  wrex 3142  Vcvv 3497  cin 3938  wss 3939  {csn 4570   ciun 4922  ccnv 5557  dom cdm 5558  ran crn 5559  cima 5561   Fn wfn 6353  wf 6354  cfv 6358  (class class class)co 7159  f cof 7410  cc 10538  cr 10539   + caddc 10543  cmin 10873  1citg1 24219
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1969  ax-7 2014  ax-8 2115  ax-9 2123  ax-10 2144  ax-11 2160  ax-12 2176  ax-ext 2796  ax-rep 5193  ax-sep 5206  ax-nul 5213  ax-pow 5269  ax-pr 5333  ax-un 7464  ax-cnex 10596  ax-resscn 10597  ax-1cn 10598  ax-icn 10599  ax-addcl 10600  ax-addrcl 10601  ax-mulcl 10602  ax-mulrcl 10603  ax-mulcom 10604  ax-addass 10605  ax-mulass 10606  ax-distr 10607  ax-i2m1 10608  ax-1ne0 10609  ax-1rid 10610  ax-rnegex 10611  ax-rrecex 10612  ax-cnre 10613  ax-pre-lttri 10614  ax-pre-lttrn 10615  ax-pre-ltadd 10616
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1539  df-ex 1780  df-nf 1784  df-sb 2069  df-mo 2621  df-eu 2653  df-clab 2803  df-cleq 2817  df-clel 2896  df-nfc 2966  df-ne 3020  df-nel 3127  df-ral 3146  df-rex 3147  df-reu 3148  df-rab 3150  df-v 3499  df-sbc 3776  df-csb 3887  df-dif 3942  df-un 3944  df-in 3946  df-ss 3955  df-nul 4295  df-if 4471  df-pw 4544  df-sn 4571  df-pr 4573  df-op 4577  df-uni 4842  df-iun 4924  df-br 5070  df-opab 5132  df-mpt 5150  df-id 5463  df-po 5477  df-so 5478  df-xp 5564  df-rel 5565  df-cnv 5566  df-co 5567  df-dm 5568  df-rn 5569  df-res 5570  df-ima 5571  df-iota 6317  df-fun 6360  df-fn 6361  df-f 6362  df-f1 6363  df-fo 6364  df-f1o 6365  df-fv 6366  df-riota 7117  df-ov 7162  df-oprab 7163  df-mpo 7164  df-of 7412  df-er 8292  df-en 8513  df-dom 8514  df-sdom 8515  df-pnf 10680  df-mnf 10681  df-ltxr 10683  df-sub 10875  df-sum 15046  df-itg1 24224
This theorem is referenced by:  i1fadd  24299  itg1addlem4  24303
  Copyright terms: Public domain W3C validator