MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  i1fd Structured version   Visualization version   GIF version

Theorem i1fd 24284
Description: A simplified set of assumptions to show that a given function is simple. (Contributed by Mario Carneiro, 26-Jun-2014.)
Hypotheses
Ref Expression
i1fd.1 (𝜑𝐹:ℝ⟶ℝ)
i1fd.2 (𝜑 → ran 𝐹 ∈ Fin)
i1fd.3 ((𝜑𝑥 ∈ (ran 𝐹 ∖ {0})) → (𝐹 “ {𝑥}) ∈ dom vol)
i1fd.4 ((𝜑𝑥 ∈ (ran 𝐹 ∖ {0})) → (vol‘(𝐹 “ {𝑥})) ∈ ℝ)
Assertion
Ref Expression
i1fd (𝜑𝐹 ∈ dom ∫1)
Distinct variable groups:   𝑥,𝐹   𝜑,𝑥

Proof of Theorem i1fd
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 i1fd.1 . . . . . . . . 9 (𝜑𝐹:ℝ⟶ℝ)
21ad2antrr 724 . . . . . . . 8 (((𝜑𝑥 ∈ ran (,)) ∧ 0 ∈ 𝑥) → 𝐹:ℝ⟶ℝ)
3 ffun 6519 . . . . . . . 8 (𝐹:ℝ⟶ℝ → Fun 𝐹)
4 funcnvcnv 6423 . . . . . . . 8 (Fun 𝐹 → Fun 𝐹)
5 imadif 6440 . . . . . . . 8 (Fun 𝐹 → (𝐹 “ (ℝ ∖ (ℝ ∖ 𝑥))) = ((𝐹 “ ℝ) ∖ (𝐹 “ (ℝ ∖ 𝑥))))
62, 3, 4, 54syl 19 . . . . . . 7 (((𝜑𝑥 ∈ ran (,)) ∧ 0 ∈ 𝑥) → (𝐹 “ (ℝ ∖ (ℝ ∖ 𝑥))) = ((𝐹 “ ℝ) ∖ (𝐹 “ (ℝ ∖ 𝑥))))
7 ioof 12838 . . . . . . . . . . . . 13 (,):(ℝ* × ℝ*)⟶𝒫 ℝ
8 frn 6522 . . . . . . . . . . . . 13 ((,):(ℝ* × ℝ*)⟶𝒫 ℝ → ran (,) ⊆ 𝒫 ℝ)
97, 8ax-mp 5 . . . . . . . . . . . 12 ran (,) ⊆ 𝒫 ℝ
109sseli 3965 . . . . . . . . . . 11 (𝑥 ∈ ran (,) → 𝑥 ∈ 𝒫 ℝ)
1110elpwid 4552 . . . . . . . . . 10 (𝑥 ∈ ran (,) → 𝑥 ⊆ ℝ)
1211ad2antlr 725 . . . . . . . . 9 (((𝜑𝑥 ∈ ran (,)) ∧ 0 ∈ 𝑥) → 𝑥 ⊆ ℝ)
13 dfss4 4237 . . . . . . . . 9 (𝑥 ⊆ ℝ ↔ (ℝ ∖ (ℝ ∖ 𝑥)) = 𝑥)
1412, 13sylib 220 . . . . . . . 8 (((𝜑𝑥 ∈ ran (,)) ∧ 0 ∈ 𝑥) → (ℝ ∖ (ℝ ∖ 𝑥)) = 𝑥)
1514imaeq2d 5931 . . . . . . 7 (((𝜑𝑥 ∈ ran (,)) ∧ 0 ∈ 𝑥) → (𝐹 “ (ℝ ∖ (ℝ ∖ 𝑥))) = (𝐹𝑥))
166, 15eqtr3d 2860 . . . . . 6 (((𝜑𝑥 ∈ ran (,)) ∧ 0 ∈ 𝑥) → ((𝐹 “ ℝ) ∖ (𝐹 “ (ℝ ∖ 𝑥))) = (𝐹𝑥))
17 fimacnv 6841 . . . . . . . . 9 (𝐹:ℝ⟶ℝ → (𝐹 “ ℝ) = ℝ)
182, 17syl 17 . . . . . . . 8 (((𝜑𝑥 ∈ ran (,)) ∧ 0 ∈ 𝑥) → (𝐹 “ ℝ) = ℝ)
19 rembl 24143 . . . . . . . 8 ℝ ∈ dom vol
2018, 19eqeltrdi 2923 . . . . . . 7 (((𝜑𝑥 ∈ ran (,)) ∧ 0 ∈ 𝑥) → (𝐹 “ ℝ) ∈ dom vol)
211adantr 483 . . . . . . . . . . . . 13 ((𝜑 ∧ ¬ 0 ∈ 𝑦) → 𝐹:ℝ⟶ℝ)
22 inpreima 6836 . . . . . . . . . . . . . 14 (Fun 𝐹 → (𝐹 “ (𝑦 ∩ ran 𝐹)) = ((𝐹𝑦) ∩ (𝐹 “ ran 𝐹)))
23 iunid 4986 . . . . . . . . . . . . . . . 16 𝑥 ∈ (𝑦 ∩ ran 𝐹){𝑥} = (𝑦 ∩ ran 𝐹)
2423imaeq2i 5929 . . . . . . . . . . . . . . 15 (𝐹 𝑥 ∈ (𝑦 ∩ ran 𝐹){𝑥}) = (𝐹 “ (𝑦 ∩ ran 𝐹))
25 imaiun 7006 . . . . . . . . . . . . . . 15 (𝐹 𝑥 ∈ (𝑦 ∩ ran 𝐹){𝑥}) = 𝑥 ∈ (𝑦 ∩ ran 𝐹)(𝐹 “ {𝑥})
2624, 25eqtr3i 2848 . . . . . . . . . . . . . 14 (𝐹 “ (𝑦 ∩ ran 𝐹)) = 𝑥 ∈ (𝑦 ∩ ran 𝐹)(𝐹 “ {𝑥})
27 cnvimass 5951 . . . . . . . . . . . . . . . 16 (𝐹𝑦) ⊆ dom 𝐹
28 cnvimarndm 5952 . . . . . . . . . . . . . . . 16 (𝐹 “ ran 𝐹) = dom 𝐹
2927, 28sseqtrri 4006 . . . . . . . . . . . . . . 15 (𝐹𝑦) ⊆ (𝐹 “ ran 𝐹)
30 df-ss 3954 . . . . . . . . . . . . . . 15 ((𝐹𝑦) ⊆ (𝐹 “ ran 𝐹) ↔ ((𝐹𝑦) ∩ (𝐹 “ ran 𝐹)) = (𝐹𝑦))
3129, 30mpbi 232 . . . . . . . . . . . . . 14 ((𝐹𝑦) ∩ (𝐹 “ ran 𝐹)) = (𝐹𝑦)
3222, 26, 313eqtr3g 2881 . . . . . . . . . . . . 13 (Fun 𝐹 𝑥 ∈ (𝑦 ∩ ran 𝐹)(𝐹 “ {𝑥}) = (𝐹𝑦))
3321, 3, 323syl 18 . . . . . . . . . . . 12 ((𝜑 ∧ ¬ 0 ∈ 𝑦) → 𝑥 ∈ (𝑦 ∩ ran 𝐹)(𝐹 “ {𝑥}) = (𝐹𝑦))
34 i1fd.2 . . . . . . . . . . . . . . 15 (𝜑 → ran 𝐹 ∈ Fin)
3534adantr 483 . . . . . . . . . . . . . 14 ((𝜑 ∧ ¬ 0 ∈ 𝑦) → ran 𝐹 ∈ Fin)
36 inss2 4208 . . . . . . . . . . . . . 14 (𝑦 ∩ ran 𝐹) ⊆ ran 𝐹
37 ssfi 8740 . . . . . . . . . . . . . 14 ((ran 𝐹 ∈ Fin ∧ (𝑦 ∩ ran 𝐹) ⊆ ran 𝐹) → (𝑦 ∩ ran 𝐹) ∈ Fin)
3835, 36, 37sylancl 588 . . . . . . . . . . . . 13 ((𝜑 ∧ ¬ 0 ∈ 𝑦) → (𝑦 ∩ ran 𝐹) ∈ Fin)
39 simpll 765 . . . . . . . . . . . . . . 15 (((𝜑 ∧ ¬ 0 ∈ 𝑦) ∧ 𝑥 ∈ (𝑦 ∩ ran 𝐹)) → 𝜑)
40 elinel1 4174 . . . . . . . . . . . . . . . . . . . 20 (0 ∈ (𝑦 ∩ ran 𝐹) → 0 ∈ 𝑦)
4140con3i 157 . . . . . . . . . . . . . . . . . . 19 (¬ 0 ∈ 𝑦 → ¬ 0 ∈ (𝑦 ∩ ran 𝐹))
4241adantl 484 . . . . . . . . . . . . . . . . . 18 ((𝜑 ∧ ¬ 0 ∈ 𝑦) → ¬ 0 ∈ (𝑦 ∩ ran 𝐹))
43 disjsn 4649 . . . . . . . . . . . . . . . . . 18 (((𝑦 ∩ ran 𝐹) ∩ {0}) = ∅ ↔ ¬ 0 ∈ (𝑦 ∩ ran 𝐹))
4442, 43sylibr 236 . . . . . . . . . . . . . . . . 17 ((𝜑 ∧ ¬ 0 ∈ 𝑦) → ((𝑦 ∩ ran 𝐹) ∩ {0}) = ∅)
45 reldisj 4404 . . . . . . . . . . . . . . . . . 18 ((𝑦 ∩ ran 𝐹) ⊆ ran 𝐹 → (((𝑦 ∩ ran 𝐹) ∩ {0}) = ∅ ↔ (𝑦 ∩ ran 𝐹) ⊆ (ran 𝐹 ∖ {0})))
4636, 45ax-mp 5 . . . . . . . . . . . . . . . . 17 (((𝑦 ∩ ran 𝐹) ∩ {0}) = ∅ ↔ (𝑦 ∩ ran 𝐹) ⊆ (ran 𝐹 ∖ {0}))
4744, 46sylib 220 . . . . . . . . . . . . . . . 16 ((𝜑 ∧ ¬ 0 ∈ 𝑦) → (𝑦 ∩ ran 𝐹) ⊆ (ran 𝐹 ∖ {0}))
4847sselda 3969 . . . . . . . . . . . . . . 15 (((𝜑 ∧ ¬ 0 ∈ 𝑦) ∧ 𝑥 ∈ (𝑦 ∩ ran 𝐹)) → 𝑥 ∈ (ran 𝐹 ∖ {0}))
49 i1fd.3 . . . . . . . . . . . . . . 15 ((𝜑𝑥 ∈ (ran 𝐹 ∖ {0})) → (𝐹 “ {𝑥}) ∈ dom vol)
5039, 48, 49syl2anc 586 . . . . . . . . . . . . . 14 (((𝜑 ∧ ¬ 0 ∈ 𝑦) ∧ 𝑥 ∈ (𝑦 ∩ ran 𝐹)) → (𝐹 “ {𝑥}) ∈ dom vol)
5150ralrimiva 3184 . . . . . . . . . . . . 13 ((𝜑 ∧ ¬ 0 ∈ 𝑦) → ∀𝑥 ∈ (𝑦 ∩ ran 𝐹)(𝐹 “ {𝑥}) ∈ dom vol)
52 finiunmbl 24147 . . . . . . . . . . . . 13 (((𝑦 ∩ ran 𝐹) ∈ Fin ∧ ∀𝑥 ∈ (𝑦 ∩ ran 𝐹)(𝐹 “ {𝑥}) ∈ dom vol) → 𝑥 ∈ (𝑦 ∩ ran 𝐹)(𝐹 “ {𝑥}) ∈ dom vol)
5338, 51, 52syl2anc 586 . . . . . . . . . . . 12 ((𝜑 ∧ ¬ 0 ∈ 𝑦) → 𝑥 ∈ (𝑦 ∩ ran 𝐹)(𝐹 “ {𝑥}) ∈ dom vol)
5433, 53eqeltrrd 2916 . . . . . . . . . . 11 ((𝜑 ∧ ¬ 0 ∈ 𝑦) → (𝐹𝑦) ∈ dom vol)
5554ex 415 . . . . . . . . . 10 (𝜑 → (¬ 0 ∈ 𝑦 → (𝐹𝑦) ∈ dom vol))
5655alrimiv 1928 . . . . . . . . 9 (𝜑 → ∀𝑦(¬ 0 ∈ 𝑦 → (𝐹𝑦) ∈ dom vol))
5756ad2antrr 724 . . . . . . . 8 (((𝜑𝑥 ∈ ran (,)) ∧ 0 ∈ 𝑥) → ∀𝑦(¬ 0 ∈ 𝑦 → (𝐹𝑦) ∈ dom vol))
58 elndif 4107 . . . . . . . . 9 (0 ∈ 𝑥 → ¬ 0 ∈ (ℝ ∖ 𝑥))
5958adantl 484 . . . . . . . 8 (((𝜑𝑥 ∈ ran (,)) ∧ 0 ∈ 𝑥) → ¬ 0 ∈ (ℝ ∖ 𝑥))
60 reex 10630 . . . . . . . . . 10 ℝ ∈ V
6160difexi 5234 . . . . . . . . 9 (ℝ ∖ 𝑥) ∈ V
62 eleq2 2903 . . . . . . . . . . 11 (𝑦 = (ℝ ∖ 𝑥) → (0 ∈ 𝑦 ↔ 0 ∈ (ℝ ∖ 𝑥)))
6362notbid 320 . . . . . . . . . 10 (𝑦 = (ℝ ∖ 𝑥) → (¬ 0 ∈ 𝑦 ↔ ¬ 0 ∈ (ℝ ∖ 𝑥)))
64 imaeq2 5927 . . . . . . . . . . 11 (𝑦 = (ℝ ∖ 𝑥) → (𝐹𝑦) = (𝐹 “ (ℝ ∖ 𝑥)))
6564eleq1d 2899 . . . . . . . . . 10 (𝑦 = (ℝ ∖ 𝑥) → ((𝐹𝑦) ∈ dom vol ↔ (𝐹 “ (ℝ ∖ 𝑥)) ∈ dom vol))
6663, 65imbi12d 347 . . . . . . . . 9 (𝑦 = (ℝ ∖ 𝑥) → ((¬ 0 ∈ 𝑦 → (𝐹𝑦) ∈ dom vol) ↔ (¬ 0 ∈ (ℝ ∖ 𝑥) → (𝐹 “ (ℝ ∖ 𝑥)) ∈ dom vol)))
6761, 66spcv 3608 . . . . . . . 8 (∀𝑦(¬ 0 ∈ 𝑦 → (𝐹𝑦) ∈ dom vol) → (¬ 0 ∈ (ℝ ∖ 𝑥) → (𝐹 “ (ℝ ∖ 𝑥)) ∈ dom vol))
6857, 59, 67sylc 65 . . . . . . 7 (((𝜑𝑥 ∈ ran (,)) ∧ 0 ∈ 𝑥) → (𝐹 “ (ℝ ∖ 𝑥)) ∈ dom vol)
69 difmbl 24146 . . . . . . 7 (((𝐹 “ ℝ) ∈ dom vol ∧ (𝐹 “ (ℝ ∖ 𝑥)) ∈ dom vol) → ((𝐹 “ ℝ) ∖ (𝐹 “ (ℝ ∖ 𝑥))) ∈ dom vol)
7020, 68, 69syl2anc 586 . . . . . 6 (((𝜑𝑥 ∈ ran (,)) ∧ 0 ∈ 𝑥) → ((𝐹 “ ℝ) ∖ (𝐹 “ (ℝ ∖ 𝑥))) ∈ dom vol)
7116, 70eqeltrrd 2916 . . . . 5 (((𝜑𝑥 ∈ ran (,)) ∧ 0 ∈ 𝑥) → (𝐹𝑥) ∈ dom vol)
72 eleq2 2903 . . . . . . . . . . 11 (𝑦 = 𝑥 → (0 ∈ 𝑦 ↔ 0 ∈ 𝑥))
7372notbid 320 . . . . . . . . . 10 (𝑦 = 𝑥 → (¬ 0 ∈ 𝑦 ↔ ¬ 0 ∈ 𝑥))
74 imaeq2 5927 . . . . . . . . . . 11 (𝑦 = 𝑥 → (𝐹𝑦) = (𝐹𝑥))
7574eleq1d 2899 . . . . . . . . . 10 (𝑦 = 𝑥 → ((𝐹𝑦) ∈ dom vol ↔ (𝐹𝑥) ∈ dom vol))
7673, 75imbi12d 347 . . . . . . . . 9 (𝑦 = 𝑥 → ((¬ 0 ∈ 𝑦 → (𝐹𝑦) ∈ dom vol) ↔ (¬ 0 ∈ 𝑥 → (𝐹𝑥) ∈ dom vol)))
7776spvv 2003 . . . . . . . 8 (∀𝑦(¬ 0 ∈ 𝑦 → (𝐹𝑦) ∈ dom vol) → (¬ 0 ∈ 𝑥 → (𝐹𝑥) ∈ dom vol))
7856, 77syl 17 . . . . . . 7 (𝜑 → (¬ 0 ∈ 𝑥 → (𝐹𝑥) ∈ dom vol))
7978imp 409 . . . . . 6 ((𝜑 ∧ ¬ 0 ∈ 𝑥) → (𝐹𝑥) ∈ dom vol)
8079adantlr 713 . . . . 5 (((𝜑𝑥 ∈ ran (,)) ∧ ¬ 0 ∈ 𝑥) → (𝐹𝑥) ∈ dom vol)
8171, 80pm2.61dan 811 . . . 4 ((𝜑𝑥 ∈ ran (,)) → (𝐹𝑥) ∈ dom vol)
8281ralrimiva 3184 . . 3 (𝜑 → ∀𝑥 ∈ ran (,)(𝐹𝑥) ∈ dom vol)
83 ismbf 24231 . . . 4 (𝐹:ℝ⟶ℝ → (𝐹 ∈ MblFn ↔ ∀𝑥 ∈ ran (,)(𝐹𝑥) ∈ dom vol))
841, 83syl 17 . . 3 (𝜑 → (𝐹 ∈ MblFn ↔ ∀𝑥 ∈ ran (,)(𝐹𝑥) ∈ dom vol))
8582, 84mpbird 259 . 2 (𝜑𝐹 ∈ MblFn)
86 mblvol 24133 . . . . . . . 8 ((𝐹𝑦) ∈ dom vol → (vol‘(𝐹𝑦)) = (vol*‘(𝐹𝑦)))
8754, 86syl 17 . . . . . . 7 ((𝜑 ∧ ¬ 0 ∈ 𝑦) → (vol‘(𝐹𝑦)) = (vol*‘(𝐹𝑦)))
88 mblss 24134 . . . . . . . . 9 ((𝐹𝑦) ∈ dom vol → (𝐹𝑦) ⊆ ℝ)
8954, 88syl 17 . . . . . . . 8 ((𝜑 ∧ ¬ 0 ∈ 𝑦) → (𝐹𝑦) ⊆ ℝ)
90 mblvol 24133 . . . . . . . . . . 11 ((𝐹 “ {𝑥}) ∈ dom vol → (vol‘(𝐹 “ {𝑥})) = (vol*‘(𝐹 “ {𝑥})))
9150, 90syl 17 . . . . . . . . . 10 (((𝜑 ∧ ¬ 0 ∈ 𝑦) ∧ 𝑥 ∈ (𝑦 ∩ ran 𝐹)) → (vol‘(𝐹 “ {𝑥})) = (vol*‘(𝐹 “ {𝑥})))
92 i1fd.4 . . . . . . . . . . 11 ((𝜑𝑥 ∈ (ran 𝐹 ∖ {0})) → (vol‘(𝐹 “ {𝑥})) ∈ ℝ)
9339, 48, 92syl2anc 586 . . . . . . . . . 10 (((𝜑 ∧ ¬ 0 ∈ 𝑦) ∧ 𝑥 ∈ (𝑦 ∩ ran 𝐹)) → (vol‘(𝐹 “ {𝑥})) ∈ ℝ)
9491, 93eqeltrrd 2916 . . . . . . . . 9 (((𝜑 ∧ ¬ 0 ∈ 𝑦) ∧ 𝑥 ∈ (𝑦 ∩ ran 𝐹)) → (vol*‘(𝐹 “ {𝑥})) ∈ ℝ)
9538, 94fsumrecl 15093 . . . . . . . 8 ((𝜑 ∧ ¬ 0 ∈ 𝑦) → Σ𝑥 ∈ (𝑦 ∩ ran 𝐹)(vol*‘(𝐹 “ {𝑥})) ∈ ℝ)
9633fveq2d 6676 . . . . . . . . 9 ((𝜑 ∧ ¬ 0 ∈ 𝑦) → (vol*‘ 𝑥 ∈ (𝑦 ∩ ran 𝐹)(𝐹 “ {𝑥})) = (vol*‘(𝐹𝑦)))
97 mblss 24134 . . . . . . . . . . . . 13 ((𝐹 “ {𝑥}) ∈ dom vol → (𝐹 “ {𝑥}) ⊆ ℝ)
9850, 97syl 17 . . . . . . . . . . . 12 (((𝜑 ∧ ¬ 0 ∈ 𝑦) ∧ 𝑥 ∈ (𝑦 ∩ ran 𝐹)) → (𝐹 “ {𝑥}) ⊆ ℝ)
9998, 94jca 514 . . . . . . . . . . 11 (((𝜑 ∧ ¬ 0 ∈ 𝑦) ∧ 𝑥 ∈ (𝑦 ∩ ran 𝐹)) → ((𝐹 “ {𝑥}) ⊆ ℝ ∧ (vol*‘(𝐹 “ {𝑥})) ∈ ℝ))
10099ralrimiva 3184 . . . . . . . . . 10 ((𝜑 ∧ ¬ 0 ∈ 𝑦) → ∀𝑥 ∈ (𝑦 ∩ ran 𝐹)((𝐹 “ {𝑥}) ⊆ ℝ ∧ (vol*‘(𝐹 “ {𝑥})) ∈ ℝ))
101 ovolfiniun 24104 . . . . . . . . . 10 (((𝑦 ∩ ran 𝐹) ∈ Fin ∧ ∀𝑥 ∈ (𝑦 ∩ ran 𝐹)((𝐹 “ {𝑥}) ⊆ ℝ ∧ (vol*‘(𝐹 “ {𝑥})) ∈ ℝ)) → (vol*‘ 𝑥 ∈ (𝑦 ∩ ran 𝐹)(𝐹 “ {𝑥})) ≤ Σ𝑥 ∈ (𝑦 ∩ ran 𝐹)(vol*‘(𝐹 “ {𝑥})))
10238, 100, 101syl2anc 586 . . . . . . . . 9 ((𝜑 ∧ ¬ 0 ∈ 𝑦) → (vol*‘ 𝑥 ∈ (𝑦 ∩ ran 𝐹)(𝐹 “ {𝑥})) ≤ Σ𝑥 ∈ (𝑦 ∩ ran 𝐹)(vol*‘(𝐹 “ {𝑥})))
10396, 102eqbrtrrd 5092 . . . . . . . 8 ((𝜑 ∧ ¬ 0 ∈ 𝑦) → (vol*‘(𝐹𝑦)) ≤ Σ𝑥 ∈ (𝑦 ∩ ran 𝐹)(vol*‘(𝐹 “ {𝑥})))
104 ovollecl 24086 . . . . . . . 8 (((𝐹𝑦) ⊆ ℝ ∧ Σ𝑥 ∈ (𝑦 ∩ ran 𝐹)(vol*‘(𝐹 “ {𝑥})) ∈ ℝ ∧ (vol*‘(𝐹𝑦)) ≤ Σ𝑥 ∈ (𝑦 ∩ ran 𝐹)(vol*‘(𝐹 “ {𝑥}))) → (vol*‘(𝐹𝑦)) ∈ ℝ)
10589, 95, 103, 104syl3anc 1367 . . . . . . 7 ((𝜑 ∧ ¬ 0 ∈ 𝑦) → (vol*‘(𝐹𝑦)) ∈ ℝ)
10687, 105eqeltrd 2915 . . . . . 6 ((𝜑 ∧ ¬ 0 ∈ 𝑦) → (vol‘(𝐹𝑦)) ∈ ℝ)
107106ex 415 . . . . 5 (𝜑 → (¬ 0 ∈ 𝑦 → (vol‘(𝐹𝑦)) ∈ ℝ))
108107alrimiv 1928 . . . 4 (𝜑 → ∀𝑦(¬ 0 ∈ 𝑦 → (vol‘(𝐹𝑦)) ∈ ℝ))
109 neldifsn 4727 . . . 4 ¬ 0 ∈ (ℝ ∖ {0})
11060difexi 5234 . . . . 5 (ℝ ∖ {0}) ∈ V
111 eleq2 2903 . . . . . . 7 (𝑦 = (ℝ ∖ {0}) → (0 ∈ 𝑦 ↔ 0 ∈ (ℝ ∖ {0})))
112111notbid 320 . . . . . 6 (𝑦 = (ℝ ∖ {0}) → (¬ 0 ∈ 𝑦 ↔ ¬ 0 ∈ (ℝ ∖ {0})))
113 imaeq2 5927 . . . . . . . 8 (𝑦 = (ℝ ∖ {0}) → (𝐹𝑦) = (𝐹 “ (ℝ ∖ {0})))
114113fveq2d 6676 . . . . . . 7 (𝑦 = (ℝ ∖ {0}) → (vol‘(𝐹𝑦)) = (vol‘(𝐹 “ (ℝ ∖ {0}))))
115114eleq1d 2899 . . . . . 6 (𝑦 = (ℝ ∖ {0}) → ((vol‘(𝐹𝑦)) ∈ ℝ ↔ (vol‘(𝐹 “ (ℝ ∖ {0}))) ∈ ℝ))
116112, 115imbi12d 347 . . . . 5 (𝑦 = (ℝ ∖ {0}) → ((¬ 0 ∈ 𝑦 → (vol‘(𝐹𝑦)) ∈ ℝ) ↔ (¬ 0 ∈ (ℝ ∖ {0}) → (vol‘(𝐹 “ (ℝ ∖ {0}))) ∈ ℝ)))
117110, 116spcv 3608 . . . 4 (∀𝑦(¬ 0 ∈ 𝑦 → (vol‘(𝐹𝑦)) ∈ ℝ) → (¬ 0 ∈ (ℝ ∖ {0}) → (vol‘(𝐹 “ (ℝ ∖ {0}))) ∈ ℝ))
118108, 109, 117mpisyl 21 . . 3 (𝜑 → (vol‘(𝐹 “ (ℝ ∖ {0}))) ∈ ℝ)
1191, 34, 1183jca 1124 . 2 (𝜑 → (𝐹:ℝ⟶ℝ ∧ ran 𝐹 ∈ Fin ∧ (vol‘(𝐹 “ (ℝ ∖ {0}))) ∈ ℝ))
120 isi1f 24277 . 2 (𝐹 ∈ dom ∫1 ↔ (𝐹 ∈ MblFn ∧ (𝐹:ℝ⟶ℝ ∧ ran 𝐹 ∈ Fin ∧ (vol‘(𝐹 “ (ℝ ∖ {0}))) ∈ ℝ)))
12185, 119, 120sylanbrc 585 1 (𝜑𝐹 ∈ dom ∫1)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 208  wa 398  w3a 1083  wal 1535   = wceq 1537  wcel 2114  wral 3140  cdif 3935  cin 3937  wss 3938  c0 4293  𝒫 cpw 4541  {csn 4569   ciun 4921   class class class wbr 5068   × cxp 5555  ccnv 5556  dom cdm 5557  ran crn 5558  cima 5560  Fun wfun 6351  wf 6353  cfv 6357  Fincfn 8511  cr 10538  0cc0 10539  *cxr 10676  cle 10678  (,)cioo 12741  Σcsu 15044  vol*covol 24065  volcvol 24066  MblFncmbf 24217  1citg1 24218
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2795  ax-rep 5192  ax-sep 5205  ax-nul 5212  ax-pow 5268  ax-pr 5332  ax-un 7463  ax-inf2 9106  ax-cnex 10595  ax-resscn 10596  ax-1cn 10597  ax-icn 10598  ax-addcl 10599  ax-addrcl 10600  ax-mulcl 10601  ax-mulrcl 10602  ax-mulcom 10603  ax-addass 10604  ax-mulass 10605  ax-distr 10606  ax-i2m1 10607  ax-1ne0 10608  ax-1rid 10609  ax-rnegex 10610  ax-rrecex 10611  ax-cnre 10612  ax-pre-lttri 10613  ax-pre-lttrn 10614  ax-pre-ltadd 10615  ax-pre-mulgt0 10616  ax-pre-sup 10617
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-fal 1550  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2802  df-cleq 2816  df-clel 2895  df-nfc 2965  df-ne 3019  df-nel 3126  df-ral 3145  df-rex 3146  df-reu 3147  df-rmo 3148  df-rab 3149  df-v 3498  df-sbc 3775  df-csb 3886  df-dif 3941  df-un 3943  df-in 3945  df-ss 3954  df-pss 3956  df-nul 4294  df-if 4470  df-pw 4543  df-sn 4570  df-pr 4572  df-tp 4574  df-op 4576  df-uni 4841  df-int 4879  df-iun 4923  df-br 5069  df-opab 5131  df-mpt 5149  df-tr 5175  df-id 5462  df-eprel 5467  df-po 5476  df-so 5477  df-fr 5516  df-se 5517  df-we 5518  df-xp 5563  df-rel 5564  df-cnv 5565  df-co 5566  df-dm 5567  df-rn 5568  df-res 5569  df-ima 5570  df-pred 6150  df-ord 6196  df-on 6197  df-lim 6198  df-suc 6199  df-iota 6316  df-fun 6359  df-fn 6360  df-f 6361  df-f1 6362  df-fo 6363  df-f1o 6364  df-fv 6365  df-isom 6366  df-riota 7116  df-ov 7161  df-oprab 7162  df-mpo 7163  df-of 7411  df-om 7583  df-1st 7691  df-2nd 7692  df-wrecs 7949  df-recs 8010  df-rdg 8048  df-1o 8104  df-2o 8105  df-oadd 8108  df-er 8291  df-map 8410  df-pm 8411  df-en 8512  df-dom 8513  df-sdom 8514  df-fin 8515  df-sup 8908  df-inf 8909  df-oi 8976  df-dju 9332  df-card 9370  df-pnf 10679  df-mnf 10680  df-xr 10681  df-ltxr 10682  df-le 10683  df-sub 10874  df-neg 10875  df-div 11300  df-nn 11641  df-2 11703  df-3 11704  df-n0 11901  df-z 11985  df-uz 12247  df-q 12352  df-rp 12393  df-xadd 12511  df-ioo 12745  df-ico 12747  df-icc 12748  df-fz 12896  df-fzo 13037  df-fl 13165  df-seq 13373  df-exp 13433  df-hash 13694  df-cj 14460  df-re 14461  df-im 14462  df-sqrt 14596  df-abs 14597  df-clim 14847  df-sum 15045  df-xmet 20540  df-met 20541  df-ovol 24067  df-vol 24068  df-mbf 24222  df-itg1 24223
This theorem is referenced by:  i1f0  24290  i1f1  24293  i1fadd  24298  i1fmul  24299  i1fmulc  24306  i1fres  24308  mbfi1fseqlem4  24321  itg2addnclem2  34946  ftc1anclem3  34971
  Copyright terms: Public domain W3C validator