MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  i1fmulc Structured version   Visualization version   GIF version

Theorem i1fmulc 23640
Description: A nonnegative constant times a simple function gives another simple function. (Contributed by Mario Carneiro, 25-Jun-2014.)
Hypotheses
Ref Expression
i1fmulc.2 (𝜑𝐹 ∈ dom ∫1)
i1fmulc.3 (𝜑𝐴 ∈ ℝ)
Assertion
Ref Expression
i1fmulc (𝜑 → ((ℝ × {𝐴}) ∘𝑓 · 𝐹) ∈ dom ∫1)

Proof of Theorem i1fmulc
Dummy variables 𝑤 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 reex 10190 . . . . 5 ℝ ∈ V
21a1i 11 . . . 4 ((𝜑𝐴 = 0) → ℝ ∈ V)
3 i1fmulc.2 . . . . . 6 (𝜑𝐹 ∈ dom ∫1)
4 i1ff 23613 . . . . . 6 (𝐹 ∈ dom ∫1𝐹:ℝ⟶ℝ)
53, 4syl 17 . . . . 5 (𝜑𝐹:ℝ⟶ℝ)
65adantr 472 . . . 4 ((𝜑𝐴 = 0) → 𝐹:ℝ⟶ℝ)
7 i1fmulc.3 . . . . 5 (𝜑𝐴 ∈ ℝ)
87adantr 472 . . . 4 ((𝜑𝐴 = 0) → 𝐴 ∈ ℝ)
9 0red 10204 . . . 4 ((𝜑𝐴 = 0) → 0 ∈ ℝ)
10 simplr 809 . . . . . 6 (((𝜑𝐴 = 0) ∧ 𝑥 ∈ ℝ) → 𝐴 = 0)
1110oveq1d 6816 . . . . 5 (((𝜑𝐴 = 0) ∧ 𝑥 ∈ ℝ) → (𝐴 · 𝑥) = (0 · 𝑥))
12 mul02lem2 10376 . . . . . 6 (𝑥 ∈ ℝ → (0 · 𝑥) = 0)
1312adantl 473 . . . . 5 (((𝜑𝐴 = 0) ∧ 𝑥 ∈ ℝ) → (0 · 𝑥) = 0)
1411, 13eqtrd 2782 . . . 4 (((𝜑𝐴 = 0) ∧ 𝑥 ∈ ℝ) → (𝐴 · 𝑥) = 0)
152, 6, 8, 9, 14caofid2 7081 . . 3 ((𝜑𝐴 = 0) → ((ℝ × {𝐴}) ∘𝑓 · 𝐹) = (ℝ × {0}))
16 i1f0 23624 . . 3 (ℝ × {0}) ∈ dom ∫1
1715, 16syl6eqel 2835 . 2 ((𝜑𝐴 = 0) → ((ℝ × {𝐴}) ∘𝑓 · 𝐹) ∈ dom ∫1)
18 remulcl 10184 . . . . . 6 ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) → (𝑥 · 𝑦) ∈ ℝ)
1918adantl 473 . . . . 5 ((𝜑 ∧ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ)) → (𝑥 · 𝑦) ∈ ℝ)
20 fconst6g 6243 . . . . . 6 (𝐴 ∈ ℝ → (ℝ × {𝐴}):ℝ⟶ℝ)
217, 20syl 17 . . . . 5 (𝜑 → (ℝ × {𝐴}):ℝ⟶ℝ)
221a1i 11 . . . . 5 (𝜑 → ℝ ∈ V)
23 inidm 3953 . . . . 5 (ℝ ∩ ℝ) = ℝ
2419, 21, 5, 22, 22, 23off 7065 . . . 4 (𝜑 → ((ℝ × {𝐴}) ∘𝑓 · 𝐹):ℝ⟶ℝ)
2524adantr 472 . . 3 ((𝜑𝐴 ≠ 0) → ((ℝ × {𝐴}) ∘𝑓 · 𝐹):ℝ⟶ℝ)
26 i1frn 23614 . . . . . . 7 (𝐹 ∈ dom ∫1 → ran 𝐹 ∈ Fin)
273, 26syl 17 . . . . . 6 (𝜑 → ran 𝐹 ∈ Fin)
28 ovex 6829 . . . . . . . 8 (𝐴 · 𝑦) ∈ V
29 eqid 2748 . . . . . . . 8 (𝑦 ∈ ran 𝐹 ↦ (𝐴 · 𝑦)) = (𝑦 ∈ ran 𝐹 ↦ (𝐴 · 𝑦))
3028, 29fnmpti 6171 . . . . . . 7 (𝑦 ∈ ran 𝐹 ↦ (𝐴 · 𝑦)) Fn ran 𝐹
31 dffn4 6270 . . . . . . 7 ((𝑦 ∈ ran 𝐹 ↦ (𝐴 · 𝑦)) Fn ran 𝐹 ↔ (𝑦 ∈ ran 𝐹 ↦ (𝐴 · 𝑦)):ran 𝐹onto→ran (𝑦 ∈ ran 𝐹 ↦ (𝐴 · 𝑦)))
3230, 31mpbi 220 . . . . . 6 (𝑦 ∈ ran 𝐹 ↦ (𝐴 · 𝑦)):ran 𝐹onto→ran (𝑦 ∈ ran 𝐹 ↦ (𝐴 · 𝑦))
33 fofi 8405 . . . . . 6 ((ran 𝐹 ∈ Fin ∧ (𝑦 ∈ ran 𝐹 ↦ (𝐴 · 𝑦)):ran 𝐹onto→ran (𝑦 ∈ ran 𝐹 ↦ (𝐴 · 𝑦))) → ran (𝑦 ∈ ran 𝐹 ↦ (𝐴 · 𝑦)) ∈ Fin)
3427, 32, 33sylancl 697 . . . . 5 (𝜑 → ran (𝑦 ∈ ran 𝐹 ↦ (𝐴 · 𝑦)) ∈ Fin)
35 id 22 . . . . . . . . . . 11 (𝑤 ∈ ran 𝐹𝑤 ∈ ran 𝐹)
36 elsni 4326 . . . . . . . . . . . 12 (𝑥 ∈ {𝐴} → 𝑥 = 𝐴)
3736oveq1d 6816 . . . . . . . . . . 11 (𝑥 ∈ {𝐴} → (𝑥 · 𝑤) = (𝐴 · 𝑤))
38 oveq2 6809 . . . . . . . . . . . . 13 (𝑦 = 𝑤 → (𝐴 · 𝑦) = (𝐴 · 𝑤))
3938eqeq2d 2758 . . . . . . . . . . . 12 (𝑦 = 𝑤 → ((𝑥 · 𝑤) = (𝐴 · 𝑦) ↔ (𝑥 · 𝑤) = (𝐴 · 𝑤)))
4039rspcev 3437 . . . . . . . . . . 11 ((𝑤 ∈ ran 𝐹 ∧ (𝑥 · 𝑤) = (𝐴 · 𝑤)) → ∃𝑦 ∈ ran 𝐹(𝑥 · 𝑤) = (𝐴 · 𝑦))
4135, 37, 40syl2anr 496 . . . . . . . . . 10 ((𝑥 ∈ {𝐴} ∧ 𝑤 ∈ ran 𝐹) → ∃𝑦 ∈ ran 𝐹(𝑥 · 𝑤) = (𝐴 · 𝑦))
42 ovex 6829 . . . . . . . . . . 11 (𝑥 · 𝑤) ∈ V
43 eqeq1 2752 . . . . . . . . . . . 12 (𝑧 = (𝑥 · 𝑤) → (𝑧 = (𝐴 · 𝑦) ↔ (𝑥 · 𝑤) = (𝐴 · 𝑦)))
4443rexbidv 3178 . . . . . . . . . . 11 (𝑧 = (𝑥 · 𝑤) → (∃𝑦 ∈ ran 𝐹 𝑧 = (𝐴 · 𝑦) ↔ ∃𝑦 ∈ ran 𝐹(𝑥 · 𝑤) = (𝐴 · 𝑦)))
4542, 44elab 3478 . . . . . . . . . 10 ((𝑥 · 𝑤) ∈ {𝑧 ∣ ∃𝑦 ∈ ran 𝐹 𝑧 = (𝐴 · 𝑦)} ↔ ∃𝑦 ∈ ran 𝐹(𝑥 · 𝑤) = (𝐴 · 𝑦))
4641, 45sylibr 224 . . . . . . . . 9 ((𝑥 ∈ {𝐴} ∧ 𝑤 ∈ ran 𝐹) → (𝑥 · 𝑤) ∈ {𝑧 ∣ ∃𝑦 ∈ ran 𝐹 𝑧 = (𝐴 · 𝑦)})
4746adantl 473 . . . . . . . 8 ((𝜑 ∧ (𝑥 ∈ {𝐴} ∧ 𝑤 ∈ ran 𝐹)) → (𝑥 · 𝑤) ∈ {𝑧 ∣ ∃𝑦 ∈ ran 𝐹 𝑧 = (𝐴 · 𝑦)})
48 fconstg 6241 . . . . . . . . 9 (𝐴 ∈ ℝ → (ℝ × {𝐴}):ℝ⟶{𝐴})
497, 48syl 17 . . . . . . . 8 (𝜑 → (ℝ × {𝐴}):ℝ⟶{𝐴})
50 ffn 6194 . . . . . . . . . 10 (𝐹:ℝ⟶ℝ → 𝐹 Fn ℝ)
515, 50syl 17 . . . . . . . . 9 (𝜑𝐹 Fn ℝ)
52 dffn3 6203 . . . . . . . . 9 (𝐹 Fn ℝ ↔ 𝐹:ℝ⟶ran 𝐹)
5351, 52sylib 208 . . . . . . . 8 (𝜑𝐹:ℝ⟶ran 𝐹)
5447, 49, 53, 22, 22, 23off 7065 . . . . . . 7 (𝜑 → ((ℝ × {𝐴}) ∘𝑓 · 𝐹):ℝ⟶{𝑧 ∣ ∃𝑦 ∈ ran 𝐹 𝑧 = (𝐴 · 𝑦)})
55 frn 6202 . . . . . . 7 (((ℝ × {𝐴}) ∘𝑓 · 𝐹):ℝ⟶{𝑧 ∣ ∃𝑦 ∈ ran 𝐹 𝑧 = (𝐴 · 𝑦)} → ran ((ℝ × {𝐴}) ∘𝑓 · 𝐹) ⊆ {𝑧 ∣ ∃𝑦 ∈ ran 𝐹 𝑧 = (𝐴 · 𝑦)})
5654, 55syl 17 . . . . . 6 (𝜑 → ran ((ℝ × {𝐴}) ∘𝑓 · 𝐹) ⊆ {𝑧 ∣ ∃𝑦 ∈ ran 𝐹 𝑧 = (𝐴 · 𝑦)})
5729rnmpt 5514 . . . . . 6 ran (𝑦 ∈ ran 𝐹 ↦ (𝐴 · 𝑦)) = {𝑧 ∣ ∃𝑦 ∈ ran 𝐹 𝑧 = (𝐴 · 𝑦)}
5856, 57syl6sseqr 3781 . . . . 5 (𝜑 → ran ((ℝ × {𝐴}) ∘𝑓 · 𝐹) ⊆ ran (𝑦 ∈ ran 𝐹 ↦ (𝐴 · 𝑦)))
59 ssfi 8333 . . . . 5 ((ran (𝑦 ∈ ran 𝐹 ↦ (𝐴 · 𝑦)) ∈ Fin ∧ ran ((ℝ × {𝐴}) ∘𝑓 · 𝐹) ⊆ ran (𝑦 ∈ ran 𝐹 ↦ (𝐴 · 𝑦))) → ran ((ℝ × {𝐴}) ∘𝑓 · 𝐹) ∈ Fin)
6034, 58, 59syl2anc 696 . . . 4 (𝜑 → ran ((ℝ × {𝐴}) ∘𝑓 · 𝐹) ∈ Fin)
6160adantr 472 . . 3 ((𝜑𝐴 ≠ 0) → ran ((ℝ × {𝐴}) ∘𝑓 · 𝐹) ∈ Fin)
62 frn 6202 . . . . . . . . 9 (((ℝ × {𝐴}) ∘𝑓 · 𝐹):ℝ⟶ℝ → ran ((ℝ × {𝐴}) ∘𝑓 · 𝐹) ⊆ ℝ)
6324, 62syl 17 . . . . . . . 8 (𝜑 → ran ((ℝ × {𝐴}) ∘𝑓 · 𝐹) ⊆ ℝ)
6463ssdifssd 3879 . . . . . . 7 (𝜑 → (ran ((ℝ × {𝐴}) ∘𝑓 · 𝐹) ∖ {0}) ⊆ ℝ)
6564adantr 472 . . . . . 6 ((𝜑𝐴 ≠ 0) → (ran ((ℝ × {𝐴}) ∘𝑓 · 𝐹) ∖ {0}) ⊆ ℝ)
6665sselda 3732 . . . . 5 (((𝜑𝐴 ≠ 0) ∧ 𝑦 ∈ (ran ((ℝ × {𝐴}) ∘𝑓 · 𝐹) ∖ {0})) → 𝑦 ∈ ℝ)
673, 7i1fmulclem 23639 . . . . 5 (((𝜑𝐴 ≠ 0) ∧ 𝑦 ∈ ℝ) → (((ℝ × {𝐴}) ∘𝑓 · 𝐹) “ {𝑦}) = (𝐹 “ {(𝑦 / 𝐴)}))
6866, 67syldan 488 . . . 4 (((𝜑𝐴 ≠ 0) ∧ 𝑦 ∈ (ran ((ℝ × {𝐴}) ∘𝑓 · 𝐹) ∖ {0})) → (((ℝ × {𝐴}) ∘𝑓 · 𝐹) “ {𝑦}) = (𝐹 “ {(𝑦 / 𝐴)}))
69 i1fima 23615 . . . . . 6 (𝐹 ∈ dom ∫1 → (𝐹 “ {(𝑦 / 𝐴)}) ∈ dom vol)
703, 69syl 17 . . . . 5 (𝜑 → (𝐹 “ {(𝑦 / 𝐴)}) ∈ dom vol)
7170ad2antrr 764 . . . 4 (((𝜑𝐴 ≠ 0) ∧ 𝑦 ∈ (ran ((ℝ × {𝐴}) ∘𝑓 · 𝐹) ∖ {0})) → (𝐹 “ {(𝑦 / 𝐴)}) ∈ dom vol)
7268, 71eqeltrd 2827 . . 3 (((𝜑𝐴 ≠ 0) ∧ 𝑦 ∈ (ran ((ℝ × {𝐴}) ∘𝑓 · 𝐹) ∖ {0})) → (((ℝ × {𝐴}) ∘𝑓 · 𝐹) “ {𝑦}) ∈ dom vol)
7368fveq2d 6344 . . . 4 (((𝜑𝐴 ≠ 0) ∧ 𝑦 ∈ (ran ((ℝ × {𝐴}) ∘𝑓 · 𝐹) ∖ {0})) → (vol‘(((ℝ × {𝐴}) ∘𝑓 · 𝐹) “ {𝑦})) = (vol‘(𝐹 “ {(𝑦 / 𝐴)})))
743ad2antrr 764 . . . . 5 (((𝜑𝐴 ≠ 0) ∧ 𝑦 ∈ (ran ((ℝ × {𝐴}) ∘𝑓 · 𝐹) ∖ {0})) → 𝐹 ∈ dom ∫1)
757ad2antrr 764 . . . . . . 7 (((𝜑𝐴 ≠ 0) ∧ 𝑦 ∈ (ran ((ℝ × {𝐴}) ∘𝑓 · 𝐹) ∖ {0})) → 𝐴 ∈ ℝ)
76 simplr 809 . . . . . . 7 (((𝜑𝐴 ≠ 0) ∧ 𝑦 ∈ (ran ((ℝ × {𝐴}) ∘𝑓 · 𝐹) ∖ {0})) → 𝐴 ≠ 0)
7766, 75, 76redivcld 11016 . . . . . 6 (((𝜑𝐴 ≠ 0) ∧ 𝑦 ∈ (ran ((ℝ × {𝐴}) ∘𝑓 · 𝐹) ∖ {0})) → (𝑦 / 𝐴) ∈ ℝ)
7866recnd 10231 . . . . . . 7 (((𝜑𝐴 ≠ 0) ∧ 𝑦 ∈ (ran ((ℝ × {𝐴}) ∘𝑓 · 𝐹) ∖ {0})) → 𝑦 ∈ ℂ)
7975recnd 10231 . . . . . . 7 (((𝜑𝐴 ≠ 0) ∧ 𝑦 ∈ (ran ((ℝ × {𝐴}) ∘𝑓 · 𝐹) ∖ {0})) → 𝐴 ∈ ℂ)
80 eldifsni 4454 . . . . . . . 8 (𝑦 ∈ (ran ((ℝ × {𝐴}) ∘𝑓 · 𝐹) ∖ {0}) → 𝑦 ≠ 0)
8180adantl 473 . . . . . . 7 (((𝜑𝐴 ≠ 0) ∧ 𝑦 ∈ (ran ((ℝ × {𝐴}) ∘𝑓 · 𝐹) ∖ {0})) → 𝑦 ≠ 0)
8278, 79, 81, 76divne0d 10980 . . . . . 6 (((𝜑𝐴 ≠ 0) ∧ 𝑦 ∈ (ran ((ℝ × {𝐴}) ∘𝑓 · 𝐹) ∖ {0})) → (𝑦 / 𝐴) ≠ 0)
83 eldifsn 4450 . . . . . 6 ((𝑦 / 𝐴) ∈ (ℝ ∖ {0}) ↔ ((𝑦 / 𝐴) ∈ ℝ ∧ (𝑦 / 𝐴) ≠ 0))
8477, 82, 83sylanbrc 701 . . . . 5 (((𝜑𝐴 ≠ 0) ∧ 𝑦 ∈ (ran ((ℝ × {𝐴}) ∘𝑓 · 𝐹) ∖ {0})) → (𝑦 / 𝐴) ∈ (ℝ ∖ {0}))
85 i1fima2sn 23617 . . . . 5 ((𝐹 ∈ dom ∫1 ∧ (𝑦 / 𝐴) ∈ (ℝ ∖ {0})) → (vol‘(𝐹 “ {(𝑦 / 𝐴)})) ∈ ℝ)
8674, 84, 85syl2anc 696 . . . 4 (((𝜑𝐴 ≠ 0) ∧ 𝑦 ∈ (ran ((ℝ × {𝐴}) ∘𝑓 · 𝐹) ∖ {0})) → (vol‘(𝐹 “ {(𝑦 / 𝐴)})) ∈ ℝ)
8773, 86eqeltrd 2827 . . 3 (((𝜑𝐴 ≠ 0) ∧ 𝑦 ∈ (ran ((ℝ × {𝐴}) ∘𝑓 · 𝐹) ∖ {0})) → (vol‘(((ℝ × {𝐴}) ∘𝑓 · 𝐹) “ {𝑦})) ∈ ℝ)
8825, 61, 72, 87i1fd 23618 . 2 ((𝜑𝐴 ≠ 0) → ((ℝ × {𝐴}) ∘𝑓 · 𝐹) ∈ dom ∫1)
8917, 88pm2.61dane 3007 1 (𝜑 → ((ℝ × {𝐴}) ∘𝑓 · 𝐹) ∈ dom ∫1)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 383   = wceq 1620  wcel 2127  {cab 2734  wne 2920  wrex 3039  Vcvv 3328  cdif 3700  wss 3703  {csn 4309  cmpt 4869   × cxp 5252  ccnv 5253  dom cdm 5254  ran crn 5255  cima 5257   Fn wfn 6032  wf 6033  ontowfo 6035  cfv 6037  (class class class)co 6801  𝑓 cof 7048  Fincfn 8109  cr 10098  0cc0 10099   · cmul 10104   / cdiv 10847  volcvol 23403  1citg1 23554
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1859  ax-4 1874  ax-5 1976  ax-6 2042  ax-7 2078  ax-8 2129  ax-9 2136  ax-10 2156  ax-11 2171  ax-12 2184  ax-13 2379  ax-ext 2728  ax-rep 4911  ax-sep 4921  ax-nul 4929  ax-pow 4980  ax-pr 5043  ax-un 7102  ax-inf2 8699  ax-cnex 10155  ax-resscn 10156  ax-1cn 10157  ax-icn 10158  ax-addcl 10159  ax-addrcl 10160  ax-mulcl 10161  ax-mulrcl 10162  ax-mulcom 10163  ax-addass 10164  ax-mulass 10165  ax-distr 10166  ax-i2m1 10167  ax-1ne0 10168  ax-1rid 10169  ax-rnegex 10170  ax-rrecex 10171  ax-cnre 10172  ax-pre-lttri 10173  ax-pre-lttrn 10174  ax-pre-ltadd 10175  ax-pre-mulgt0 10176  ax-pre-sup 10177
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1073  df-3an 1074  df-tru 1623  df-fal 1626  df-ex 1842  df-nf 1847  df-sb 2035  df-eu 2599  df-mo 2600  df-clab 2735  df-cleq 2741  df-clel 2744  df-nfc 2879  df-ne 2921  df-nel 3024  df-ral 3043  df-rex 3044  df-reu 3045  df-rmo 3046  df-rab 3047  df-v 3330  df-sbc 3565  df-csb 3663  df-dif 3706  df-un 3708  df-in 3710  df-ss 3717  df-pss 3719  df-nul 4047  df-if 4219  df-pw 4292  df-sn 4310  df-pr 4312  df-tp 4314  df-op 4316  df-uni 4577  df-int 4616  df-iun 4662  df-br 4793  df-opab 4853  df-mpt 4870  df-tr 4893  df-id 5162  df-eprel 5167  df-po 5175  df-so 5176  df-fr 5213  df-se 5214  df-we 5215  df-xp 5260  df-rel 5261  df-cnv 5262  df-co 5263  df-dm 5264  df-rn 5265  df-res 5266  df-ima 5267  df-pred 5829  df-ord 5875  df-on 5876  df-lim 5877  df-suc 5878  df-iota 6000  df-fun 6039  df-fn 6040  df-f 6041  df-f1 6042  df-fo 6043  df-f1o 6044  df-fv 6045  df-isom 6046  df-riota 6762  df-ov 6804  df-oprab 6805  df-mpt2 6806  df-of 7050  df-om 7219  df-1st 7321  df-2nd 7322  df-wrecs 7564  df-recs 7625  df-rdg 7663  df-1o 7717  df-2o 7718  df-oadd 7721  df-er 7899  df-map 8013  df-pm 8014  df-en 8110  df-dom 8111  df-sdom 8112  df-fin 8113  df-sup 8501  df-inf 8502  df-oi 8568  df-card 8926  df-cda 9153  df-pnf 10239  df-mnf 10240  df-xr 10241  df-ltxr 10242  df-le 10243  df-sub 10431  df-neg 10432  df-div 10848  df-nn 11184  df-2 11242  df-3 11243  df-n0 11456  df-z 11541  df-uz 11851  df-q 11953  df-rp 11997  df-xadd 12111  df-ioo 12343  df-ico 12345  df-icc 12346  df-fz 12491  df-fzo 12631  df-fl 12758  df-seq 12967  df-exp 13026  df-hash 13283  df-cj 14009  df-re 14010  df-im 14011  df-sqrt 14145  df-abs 14146  df-clim 14389  df-sum 14587  df-xmet 19912  df-met 19913  df-ovol 23404  df-vol 23405  df-mbf 23558  df-itg1 23559
This theorem is referenced by:  itg1mulc  23641  i1fsub  23645  itg1sub  23646  itg2const  23677  itg2mulclem  23683  itg2monolem1  23687  i1fibl  23744  itgitg1  23745  itg2addnclem  33743  ftc1anclem5  33771
  Copyright terms: Public domain W3C validator