MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  i1fres Structured version   Visualization version   GIF version

Theorem i1fres 23191
Description: The "restriction" of a simple function to a measurable subset is simple. (It's not actually a restriction because it is zero instead of undefined outside 𝐴.) (Contributed by Mario Carneiro, 29-Jun-2014.)
Hypothesis
Ref Expression
i1fres.1 𝐺 = (𝑥 ∈ ℝ ↦ if(𝑥𝐴, (𝐹𝑥), 0))
Assertion
Ref Expression
i1fres ((𝐹 ∈ dom ∫1𝐴 ∈ dom vol) → 𝐺 ∈ dom ∫1)
Distinct variable groups:   𝑥,𝐴   𝑥,𝐹
Allowed substitution hint:   𝐺(𝑥)

Proof of Theorem i1fres
Dummy variables 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 i1ff 23162 . . . . . . . 8 (𝐹 ∈ dom ∫1𝐹:ℝ⟶ℝ)
21adantr 479 . . . . . . 7 ((𝐹 ∈ dom ∫1𝐴 ∈ dom vol) → 𝐹:ℝ⟶ℝ)
3 ffn 5940 . . . . . . 7 (𝐹:ℝ⟶ℝ → 𝐹 Fn ℝ)
42, 3syl 17 . . . . . 6 ((𝐹 ∈ dom ∫1𝐴 ∈ dom vol) → 𝐹 Fn ℝ)
5 fnfvelrn 6245 . . . . . 6 ((𝐹 Fn ℝ ∧ 𝑥 ∈ ℝ) → (𝐹𝑥) ∈ ran 𝐹)
64, 5sylan 486 . . . . 5 (((𝐹 ∈ dom ∫1𝐴 ∈ dom vol) ∧ 𝑥 ∈ ℝ) → (𝐹𝑥) ∈ ran 𝐹)
7 i1f0rn 23168 . . . . . 6 (𝐹 ∈ dom ∫1 → 0 ∈ ran 𝐹)
87ad2antrr 757 . . . . 5 (((𝐹 ∈ dom ∫1𝐴 ∈ dom vol) ∧ 𝑥 ∈ ℝ) → 0 ∈ ran 𝐹)
96, 8ifcld 4076 . . . 4 (((𝐹 ∈ dom ∫1𝐴 ∈ dom vol) ∧ 𝑥 ∈ ℝ) → if(𝑥𝐴, (𝐹𝑥), 0) ∈ ran 𝐹)
10 i1fres.1 . . . 4 𝐺 = (𝑥 ∈ ℝ ↦ if(𝑥𝐴, (𝐹𝑥), 0))
119, 10fmptd 6273 . . 3 ((𝐹 ∈ dom ∫1𝐴 ∈ dom vol) → 𝐺:ℝ⟶ran 𝐹)
12 frn 5948 . . . 4 (𝐹:ℝ⟶ℝ → ran 𝐹 ⊆ ℝ)
132, 12syl 17 . . 3 ((𝐹 ∈ dom ∫1𝐴 ∈ dom vol) → ran 𝐹 ⊆ ℝ)
1411, 13fssd 5952 . 2 ((𝐹 ∈ dom ∫1𝐴 ∈ dom vol) → 𝐺:ℝ⟶ℝ)
15 i1frn 23163 . . . 4 (𝐹 ∈ dom ∫1 → ran 𝐹 ∈ Fin)
1615adantr 479 . . 3 ((𝐹 ∈ dom ∫1𝐴 ∈ dom vol) → ran 𝐹 ∈ Fin)
17 frn 5948 . . . 4 (𝐺:ℝ⟶ran 𝐹 → ran 𝐺 ⊆ ran 𝐹)
1811, 17syl 17 . . 3 ((𝐹 ∈ dom ∫1𝐴 ∈ dom vol) → ran 𝐺 ⊆ ran 𝐹)
19 ssfi 8038 . . 3 ((ran 𝐹 ∈ Fin ∧ ran 𝐺 ⊆ ran 𝐹) → ran 𝐺 ∈ Fin)
2016, 18, 19syl2anc 690 . 2 ((𝐹 ∈ dom ∫1𝐴 ∈ dom vol) → ran 𝐺 ∈ Fin)
21 eleq1 2671 . . . . . . . . . . . . . 14 (𝑥 = 𝑧 → (𝑥𝐴𝑧𝐴))
22 fveq2 6084 . . . . . . . . . . . . . 14 (𝑥 = 𝑧 → (𝐹𝑥) = (𝐹𝑧))
2321, 22ifbieq1d 4054 . . . . . . . . . . . . 13 (𝑥 = 𝑧 → if(𝑥𝐴, (𝐹𝑥), 0) = if(𝑧𝐴, (𝐹𝑧), 0))
24 fvex 6094 . . . . . . . . . . . . . 14 (𝐹𝑧) ∈ V
25 c0ex 9886 . . . . . . . . . . . . . 14 0 ∈ V
2624, 25ifex 4101 . . . . . . . . . . . . 13 if(𝑧𝐴, (𝐹𝑧), 0) ∈ V
2723, 10, 26fvmpt 6172 . . . . . . . . . . . 12 (𝑧 ∈ ℝ → (𝐺𝑧) = if(𝑧𝐴, (𝐹𝑧), 0))
2827adantl 480 . . . . . . . . . . 11 ((((𝐹 ∈ dom ∫1𝐴 ∈ dom vol) ∧ 𝑦 ∈ (ran 𝐺 ∖ {0})) ∧ 𝑧 ∈ ℝ) → (𝐺𝑧) = if(𝑧𝐴, (𝐹𝑧), 0))
2928eqeq1d 2607 . . . . . . . . . 10 ((((𝐹 ∈ dom ∫1𝐴 ∈ dom vol) ∧ 𝑦 ∈ (ran 𝐺 ∖ {0})) ∧ 𝑧 ∈ ℝ) → ((𝐺𝑧) = 𝑦 ↔ if(𝑧𝐴, (𝐹𝑧), 0) = 𝑦))
30 eldifsni 4256 . . . . . . . . . . . . . . 15 (𝑦 ∈ (ran 𝐺 ∖ {0}) → 𝑦 ≠ 0)
3130ad2antlr 758 . . . . . . . . . . . . . 14 ((((𝐹 ∈ dom ∫1𝐴 ∈ dom vol) ∧ 𝑦 ∈ (ran 𝐺 ∖ {0})) ∧ 𝑧 ∈ ℝ) → 𝑦 ≠ 0)
3231necomd 2832 . . . . . . . . . . . . 13 ((((𝐹 ∈ dom ∫1𝐴 ∈ dom vol) ∧ 𝑦 ∈ (ran 𝐺 ∖ {0})) ∧ 𝑧 ∈ ℝ) → 0 ≠ 𝑦)
33 iffalse 4040 . . . . . . . . . . . . . 14 𝑧𝐴 → if(𝑧𝐴, (𝐹𝑧), 0) = 0)
3433neeq1d 2836 . . . . . . . . . . . . 13 𝑧𝐴 → (if(𝑧𝐴, (𝐹𝑧), 0) ≠ 𝑦 ↔ 0 ≠ 𝑦))
3532, 34syl5ibrcom 235 . . . . . . . . . . . 12 ((((𝐹 ∈ dom ∫1𝐴 ∈ dom vol) ∧ 𝑦 ∈ (ran 𝐺 ∖ {0})) ∧ 𝑧 ∈ ℝ) → (¬ 𝑧𝐴 → if(𝑧𝐴, (𝐹𝑧), 0) ≠ 𝑦))
3635necon4bd 2797 . . . . . . . . . . 11 ((((𝐹 ∈ dom ∫1𝐴 ∈ dom vol) ∧ 𝑦 ∈ (ran 𝐺 ∖ {0})) ∧ 𝑧 ∈ ℝ) → (if(𝑧𝐴, (𝐹𝑧), 0) = 𝑦𝑧𝐴))
3736pm4.71rd 664 . . . . . . . . . 10 ((((𝐹 ∈ dom ∫1𝐴 ∈ dom vol) ∧ 𝑦 ∈ (ran 𝐺 ∖ {0})) ∧ 𝑧 ∈ ℝ) → (if(𝑧𝐴, (𝐹𝑧), 0) = 𝑦 ↔ (𝑧𝐴 ∧ if(𝑧𝐴, (𝐹𝑧), 0) = 𝑦)))
3829, 37bitrd 266 . . . . . . . . 9 ((((𝐹 ∈ dom ∫1𝐴 ∈ dom vol) ∧ 𝑦 ∈ (ran 𝐺 ∖ {0})) ∧ 𝑧 ∈ ℝ) → ((𝐺𝑧) = 𝑦 ↔ (𝑧𝐴 ∧ if(𝑧𝐴, (𝐹𝑧), 0) = 𝑦)))
39 iftrue 4037 . . . . . . . . . . 11 (𝑧𝐴 → if(𝑧𝐴, (𝐹𝑧), 0) = (𝐹𝑧))
4039eqeq1d 2607 . . . . . . . . . 10 (𝑧𝐴 → (if(𝑧𝐴, (𝐹𝑧), 0) = 𝑦 ↔ (𝐹𝑧) = 𝑦))
4140pm5.32i 666 . . . . . . . . 9 ((𝑧𝐴 ∧ if(𝑧𝐴, (𝐹𝑧), 0) = 𝑦) ↔ (𝑧𝐴 ∧ (𝐹𝑧) = 𝑦))
4238, 41syl6bb 274 . . . . . . . 8 ((((𝐹 ∈ dom ∫1𝐴 ∈ dom vol) ∧ 𝑦 ∈ (ran 𝐺 ∖ {0})) ∧ 𝑧 ∈ ℝ) → ((𝐺𝑧) = 𝑦 ↔ (𝑧𝐴 ∧ (𝐹𝑧) = 𝑦)))
4342pm5.32da 670 . . . . . . 7 (((𝐹 ∈ dom ∫1𝐴 ∈ dom vol) ∧ 𝑦 ∈ (ran 𝐺 ∖ {0})) → ((𝑧 ∈ ℝ ∧ (𝐺𝑧) = 𝑦) ↔ (𝑧 ∈ ℝ ∧ (𝑧𝐴 ∧ (𝐹𝑧) = 𝑦))))
44 an12 833 . . . . . . 7 ((𝑧 ∈ ℝ ∧ (𝑧𝐴 ∧ (𝐹𝑧) = 𝑦)) ↔ (𝑧𝐴 ∧ (𝑧 ∈ ℝ ∧ (𝐹𝑧) = 𝑦)))
4543, 44syl6bb 274 . . . . . 6 (((𝐹 ∈ dom ∫1𝐴 ∈ dom vol) ∧ 𝑦 ∈ (ran 𝐺 ∖ {0})) → ((𝑧 ∈ ℝ ∧ (𝐺𝑧) = 𝑦) ↔ (𝑧𝐴 ∧ (𝑧 ∈ ℝ ∧ (𝐹𝑧) = 𝑦))))
46 ffn 5940 . . . . . . . . 9 (𝐺:ℝ⟶ran 𝐹𝐺 Fn ℝ)
4711, 46syl 17 . . . . . . . 8 ((𝐹 ∈ dom ∫1𝐴 ∈ dom vol) → 𝐺 Fn ℝ)
4847adantr 479 . . . . . . 7 (((𝐹 ∈ dom ∫1𝐴 ∈ dom vol) ∧ 𝑦 ∈ (ran 𝐺 ∖ {0})) → 𝐺 Fn ℝ)
49 fniniseg 6227 . . . . . . 7 (𝐺 Fn ℝ → (𝑧 ∈ (𝐺 “ {𝑦}) ↔ (𝑧 ∈ ℝ ∧ (𝐺𝑧) = 𝑦)))
5048, 49syl 17 . . . . . 6 (((𝐹 ∈ dom ∫1𝐴 ∈ dom vol) ∧ 𝑦 ∈ (ran 𝐺 ∖ {0})) → (𝑧 ∈ (𝐺 “ {𝑦}) ↔ (𝑧 ∈ ℝ ∧ (𝐺𝑧) = 𝑦)))
514adantr 479 . . . . . . . 8 (((𝐹 ∈ dom ∫1𝐴 ∈ dom vol) ∧ 𝑦 ∈ (ran 𝐺 ∖ {0})) → 𝐹 Fn ℝ)
52 fniniseg 6227 . . . . . . . 8 (𝐹 Fn ℝ → (𝑧 ∈ (𝐹 “ {𝑦}) ↔ (𝑧 ∈ ℝ ∧ (𝐹𝑧) = 𝑦)))
5351, 52syl 17 . . . . . . 7 (((𝐹 ∈ dom ∫1𝐴 ∈ dom vol) ∧ 𝑦 ∈ (ran 𝐺 ∖ {0})) → (𝑧 ∈ (𝐹 “ {𝑦}) ↔ (𝑧 ∈ ℝ ∧ (𝐹𝑧) = 𝑦)))
5453anbi2d 735 . . . . . 6 (((𝐹 ∈ dom ∫1𝐴 ∈ dom vol) ∧ 𝑦 ∈ (ran 𝐺 ∖ {0})) → ((𝑧𝐴𝑧 ∈ (𝐹 “ {𝑦})) ↔ (𝑧𝐴 ∧ (𝑧 ∈ ℝ ∧ (𝐹𝑧) = 𝑦))))
5545, 50, 543bitr4d 298 . . . . 5 (((𝐹 ∈ dom ∫1𝐴 ∈ dom vol) ∧ 𝑦 ∈ (ran 𝐺 ∖ {0})) → (𝑧 ∈ (𝐺 “ {𝑦}) ↔ (𝑧𝐴𝑧 ∈ (𝐹 “ {𝑦}))))
56 elin 3753 . . . . 5 (𝑧 ∈ (𝐴 ∩ (𝐹 “ {𝑦})) ↔ (𝑧𝐴𝑧 ∈ (𝐹 “ {𝑦})))
5755, 56syl6bbr 276 . . . 4 (((𝐹 ∈ dom ∫1𝐴 ∈ dom vol) ∧ 𝑦 ∈ (ran 𝐺 ∖ {0})) → (𝑧 ∈ (𝐺 “ {𝑦}) ↔ 𝑧 ∈ (𝐴 ∩ (𝐹 “ {𝑦}))))
5857eqrdv 2603 . . 3 (((𝐹 ∈ dom ∫1𝐴 ∈ dom vol) ∧ 𝑦 ∈ (ran 𝐺 ∖ {0})) → (𝐺 “ {𝑦}) = (𝐴 ∩ (𝐹 “ {𝑦})))
59 simplr 787 . . . 4 (((𝐹 ∈ dom ∫1𝐴 ∈ dom vol) ∧ 𝑦 ∈ (ran 𝐺 ∖ {0})) → 𝐴 ∈ dom vol)
60 i1fima 23164 . . . . 5 (𝐹 ∈ dom ∫1 → (𝐹 “ {𝑦}) ∈ dom vol)
6160ad2antrr 757 . . . 4 (((𝐹 ∈ dom ∫1𝐴 ∈ dom vol) ∧ 𝑦 ∈ (ran 𝐺 ∖ {0})) → (𝐹 “ {𝑦}) ∈ dom vol)
62 inmbl 23030 . . . 4 ((𝐴 ∈ dom vol ∧ (𝐹 “ {𝑦}) ∈ dom vol) → (𝐴 ∩ (𝐹 “ {𝑦})) ∈ dom vol)
6359, 61, 62syl2anc 690 . . 3 (((𝐹 ∈ dom ∫1𝐴 ∈ dom vol) ∧ 𝑦 ∈ (ran 𝐺 ∖ {0})) → (𝐴 ∩ (𝐹 “ {𝑦})) ∈ dom vol)
6458, 63eqeltrd 2683 . 2 (((𝐹 ∈ dom ∫1𝐴 ∈ dom vol) ∧ 𝑦 ∈ (ran 𝐺 ∖ {0})) → (𝐺 “ {𝑦}) ∈ dom vol)
6558fveq2d 6088 . . . 4 (((𝐹 ∈ dom ∫1𝐴 ∈ dom vol) ∧ 𝑦 ∈ (ran 𝐺 ∖ {0})) → (vol‘(𝐺 “ {𝑦})) = (vol‘(𝐴 ∩ (𝐹 “ {𝑦}))))
66 mblvol 23018 . . . . 5 ((𝐴 ∩ (𝐹 “ {𝑦})) ∈ dom vol → (vol‘(𝐴 ∩ (𝐹 “ {𝑦}))) = (vol*‘(𝐴 ∩ (𝐹 “ {𝑦}))))
6763, 66syl 17 . . . 4 (((𝐹 ∈ dom ∫1𝐴 ∈ dom vol) ∧ 𝑦 ∈ (ran 𝐺 ∖ {0})) → (vol‘(𝐴 ∩ (𝐹 “ {𝑦}))) = (vol*‘(𝐴 ∩ (𝐹 “ {𝑦}))))
6865, 67eqtrd 2639 . . 3 (((𝐹 ∈ dom ∫1𝐴 ∈ dom vol) ∧ 𝑦 ∈ (ran 𝐺 ∖ {0})) → (vol‘(𝐺 “ {𝑦})) = (vol*‘(𝐴 ∩ (𝐹 “ {𝑦}))))
69 inss2 3791 . . . . 5 (𝐴 ∩ (𝐹 “ {𝑦})) ⊆ (𝐹 “ {𝑦})
7069a1i 11 . . . 4 (((𝐹 ∈ dom ∫1𝐴 ∈ dom vol) ∧ 𝑦 ∈ (ran 𝐺 ∖ {0})) → (𝐴 ∩ (𝐹 “ {𝑦})) ⊆ (𝐹 “ {𝑦}))
71 mblss 23019 . . . . 5 ((𝐹 “ {𝑦}) ∈ dom vol → (𝐹 “ {𝑦}) ⊆ ℝ)
7261, 71syl 17 . . . 4 (((𝐹 ∈ dom ∫1𝐴 ∈ dom vol) ∧ 𝑦 ∈ (ran 𝐺 ∖ {0})) → (𝐹 “ {𝑦}) ⊆ ℝ)
73 mblvol 23018 . . . . . 6 ((𝐹 “ {𝑦}) ∈ dom vol → (vol‘(𝐹 “ {𝑦})) = (vol*‘(𝐹 “ {𝑦})))
7461, 73syl 17 . . . . 5 (((𝐹 ∈ dom ∫1𝐴 ∈ dom vol) ∧ 𝑦 ∈ (ran 𝐺 ∖ {0})) → (vol‘(𝐹 “ {𝑦})) = (vol*‘(𝐹 “ {𝑦})))
75 i1fima2sn 23166 . . . . . 6 ((𝐹 ∈ dom ∫1𝑦 ∈ (ran 𝐺 ∖ {0})) → (vol‘(𝐹 “ {𝑦})) ∈ ℝ)
7675adantlr 746 . . . . 5 (((𝐹 ∈ dom ∫1𝐴 ∈ dom vol) ∧ 𝑦 ∈ (ran 𝐺 ∖ {0})) → (vol‘(𝐹 “ {𝑦})) ∈ ℝ)
7774, 76eqeltrrd 2684 . . . 4 (((𝐹 ∈ dom ∫1𝐴 ∈ dom vol) ∧ 𝑦 ∈ (ran 𝐺 ∖ {0})) → (vol*‘(𝐹 “ {𝑦})) ∈ ℝ)
78 ovolsscl 22974 . . . 4 (((𝐴 ∩ (𝐹 “ {𝑦})) ⊆ (𝐹 “ {𝑦}) ∧ (𝐹 “ {𝑦}) ⊆ ℝ ∧ (vol*‘(𝐹 “ {𝑦})) ∈ ℝ) → (vol*‘(𝐴 ∩ (𝐹 “ {𝑦}))) ∈ ℝ)
7970, 72, 77, 78syl3anc 1317 . . 3 (((𝐹 ∈ dom ∫1𝐴 ∈ dom vol) ∧ 𝑦 ∈ (ran 𝐺 ∖ {0})) → (vol*‘(𝐴 ∩ (𝐹 “ {𝑦}))) ∈ ℝ)
8068, 79eqeltrd 2683 . 2 (((𝐹 ∈ dom ∫1𝐴 ∈ dom vol) ∧ 𝑦 ∈ (ran 𝐺 ∖ {0})) → (vol‘(𝐺 “ {𝑦})) ∈ ℝ)
8114, 20, 64, 80i1fd 23167 1 ((𝐹 ∈ dom ∫1𝐴 ∈ dom vol) → 𝐺 ∈ dom ∫1)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 194  wa 382   = wceq 1474  wcel 1975  wne 2775  cdif 3532  cin 3534  wss 3535  ifcif 4031  {csn 4120  cmpt 4633  ccnv 5023  dom cdm 5024  ran crn 5025  cima 5027   Fn wfn 5781  wf 5782  cfv 5786  Fincfn 7814  cr 9787  0cc0 9788  vol*covol 22951  volcvol 22952  1citg1 23103
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1711  ax-4 1726  ax-5 1825  ax-6 1873  ax-7 1920  ax-8 1977  ax-9 1984  ax-10 2004  ax-11 2019  ax-12 2031  ax-13 2228  ax-ext 2585  ax-rep 4689  ax-sep 4699  ax-nul 4708  ax-pow 4760  ax-pr 4824  ax-un 6820  ax-inf2 8394  ax-cnex 9844  ax-resscn 9845  ax-1cn 9846  ax-icn 9847  ax-addcl 9848  ax-addrcl 9849  ax-mulcl 9850  ax-mulrcl 9851  ax-mulcom 9852  ax-addass 9853  ax-mulass 9854  ax-distr 9855  ax-i2m1 9856  ax-1ne0 9857  ax-1rid 9858  ax-rnegex 9859  ax-rrecex 9860  ax-cnre 9861  ax-pre-lttri 9862  ax-pre-lttrn 9863  ax-pre-ltadd 9864  ax-pre-mulgt0 9865  ax-pre-sup 9866
This theorem depends on definitions:  df-bi 195  df-or 383  df-an 384  df-3or 1031  df-3an 1032  df-tru 1477  df-fal 1480  df-ex 1695  df-nf 1700  df-sb 1866  df-eu 2457  df-mo 2458  df-clab 2592  df-cleq 2598  df-clel 2601  df-nfc 2735  df-ne 2777  df-nel 2778  df-ral 2896  df-rex 2897  df-reu 2898  df-rmo 2899  df-rab 2900  df-v 3170  df-sbc 3398  df-csb 3495  df-dif 3538  df-un 3540  df-in 3542  df-ss 3549  df-pss 3551  df-nul 3870  df-if 4032  df-pw 4105  df-sn 4121  df-pr 4123  df-tp 4125  df-op 4127  df-uni 4363  df-int 4401  df-iun 4447  df-br 4574  df-opab 4634  df-mpt 4635  df-tr 4671  df-eprel 4935  df-id 4939  df-po 4945  df-so 4946  df-fr 4983  df-se 4984  df-we 4985  df-xp 5030  df-rel 5031  df-cnv 5032  df-co 5033  df-dm 5034  df-rn 5035  df-res 5036  df-ima 5037  df-pred 5579  df-ord 5625  df-on 5626  df-lim 5627  df-suc 5628  df-iota 5750  df-fun 5788  df-fn 5789  df-f 5790  df-f1 5791  df-fo 5792  df-f1o 5793  df-fv 5794  df-isom 5795  df-riota 6485  df-ov 6526  df-oprab 6527  df-mpt2 6528  df-of 6768  df-om 6931  df-1st 7032  df-2nd 7033  df-wrecs 7267  df-recs 7328  df-rdg 7366  df-1o 7420  df-2o 7421  df-oadd 7424  df-er 7602  df-map 7719  df-pm 7720  df-en 7815  df-dom 7816  df-sdom 7817  df-fin 7818  df-fi 8173  df-sup 8204  df-inf 8205  df-oi 8271  df-card 8621  df-cda 8846  df-pnf 9928  df-mnf 9929  df-xr 9930  df-ltxr 9931  df-le 9932  df-sub 10115  df-neg 10116  df-div 10530  df-nn 10864  df-2 10922  df-3 10923  df-n0 11136  df-z 11207  df-uz 11516  df-q 11617  df-rp 11661  df-xneg 11774  df-xadd 11775  df-xmul 11776  df-ioo 12002  df-ico 12004  df-icc 12005  df-fz 12149  df-fzo 12286  df-fl 12406  df-seq 12615  df-exp 12674  df-hash 12931  df-cj 13629  df-re 13630  df-im 13631  df-sqrt 13765  df-abs 13766  df-clim 14009  df-sum 14207  df-rest 15848  df-topgen 15869  df-psmet 19501  df-xmet 19502  df-met 19503  df-bl 19504  df-mopn 19505  df-top 20459  df-bases 20460  df-topon 20461  df-cmp 20938  df-ovol 22953  df-vol 22954  df-mbf 23107  df-itg1 23108
This theorem is referenced by:  i1fpos  23192  itg1climres  23200  itg2uba  23229  itg2splitlem  23234  itg2monolem1  23236  ftc1anclem5  32458  ftc1anclem7  32460
  Copyright terms: Public domain W3C validator