MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  i1fres Structured version   Visualization version   GIF version

Theorem i1fres 23412
Description: The "restriction" of a simple function to a measurable subset is simple. (It's not actually a restriction because it is zero instead of undefined outside 𝐴.) (Contributed by Mario Carneiro, 29-Jun-2014.)
Hypothesis
Ref Expression
i1fres.1 𝐺 = (𝑥 ∈ ℝ ↦ if(𝑥𝐴, (𝐹𝑥), 0))
Assertion
Ref Expression
i1fres ((𝐹 ∈ dom ∫1𝐴 ∈ dom vol) → 𝐺 ∈ dom ∫1)
Distinct variable groups:   𝑥,𝐴   𝑥,𝐹
Allowed substitution hint:   𝐺(𝑥)

Proof of Theorem i1fres
Dummy variables 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 i1ff 23383 . . . . . . . 8 (𝐹 ∈ dom ∫1𝐹:ℝ⟶ℝ)
21adantr 481 . . . . . . 7 ((𝐹 ∈ dom ∫1𝐴 ∈ dom vol) → 𝐹:ℝ⟶ℝ)
3 ffn 6012 . . . . . . 7 (𝐹:ℝ⟶ℝ → 𝐹 Fn ℝ)
42, 3syl 17 . . . . . 6 ((𝐹 ∈ dom ∫1𝐴 ∈ dom vol) → 𝐹 Fn ℝ)
5 fnfvelrn 6322 . . . . . 6 ((𝐹 Fn ℝ ∧ 𝑥 ∈ ℝ) → (𝐹𝑥) ∈ ran 𝐹)
64, 5sylan 488 . . . . 5 (((𝐹 ∈ dom ∫1𝐴 ∈ dom vol) ∧ 𝑥 ∈ ℝ) → (𝐹𝑥) ∈ ran 𝐹)
7 i1f0rn 23389 . . . . . 6 (𝐹 ∈ dom ∫1 → 0 ∈ ran 𝐹)
87ad2antrr 761 . . . . 5 (((𝐹 ∈ dom ∫1𝐴 ∈ dom vol) ∧ 𝑥 ∈ ℝ) → 0 ∈ ran 𝐹)
96, 8ifcld 4109 . . . 4 (((𝐹 ∈ dom ∫1𝐴 ∈ dom vol) ∧ 𝑥 ∈ ℝ) → if(𝑥𝐴, (𝐹𝑥), 0) ∈ ran 𝐹)
10 i1fres.1 . . . 4 𝐺 = (𝑥 ∈ ℝ ↦ if(𝑥𝐴, (𝐹𝑥), 0))
119, 10fmptd 6351 . . 3 ((𝐹 ∈ dom ∫1𝐴 ∈ dom vol) → 𝐺:ℝ⟶ran 𝐹)
12 frn 6020 . . . 4 (𝐹:ℝ⟶ℝ → ran 𝐹 ⊆ ℝ)
132, 12syl 17 . . 3 ((𝐹 ∈ dom ∫1𝐴 ∈ dom vol) → ran 𝐹 ⊆ ℝ)
1411, 13fssd 6024 . 2 ((𝐹 ∈ dom ∫1𝐴 ∈ dom vol) → 𝐺:ℝ⟶ℝ)
15 i1frn 23384 . . . 4 (𝐹 ∈ dom ∫1 → ran 𝐹 ∈ Fin)
1615adantr 481 . . 3 ((𝐹 ∈ dom ∫1𝐴 ∈ dom vol) → ran 𝐹 ∈ Fin)
17 frn 6020 . . . 4 (𝐺:ℝ⟶ran 𝐹 → ran 𝐺 ⊆ ran 𝐹)
1811, 17syl 17 . . 3 ((𝐹 ∈ dom ∫1𝐴 ∈ dom vol) → ran 𝐺 ⊆ ran 𝐹)
19 ssfi 8140 . . 3 ((ran 𝐹 ∈ Fin ∧ ran 𝐺 ⊆ ran 𝐹) → ran 𝐺 ∈ Fin)
2016, 18, 19syl2anc 692 . 2 ((𝐹 ∈ dom ∫1𝐴 ∈ dom vol) → ran 𝐺 ∈ Fin)
21 eleq1 2686 . . . . . . . . . . . . . 14 (𝑥 = 𝑧 → (𝑥𝐴𝑧𝐴))
22 fveq2 6158 . . . . . . . . . . . . . 14 (𝑥 = 𝑧 → (𝐹𝑥) = (𝐹𝑧))
2321, 22ifbieq1d 4087 . . . . . . . . . . . . 13 (𝑥 = 𝑧 → if(𝑥𝐴, (𝐹𝑥), 0) = if(𝑧𝐴, (𝐹𝑧), 0))
24 fvex 6168 . . . . . . . . . . . . . 14 (𝐹𝑧) ∈ V
25 c0ex 9994 . . . . . . . . . . . . . 14 0 ∈ V
2624, 25ifex 4134 . . . . . . . . . . . . 13 if(𝑧𝐴, (𝐹𝑧), 0) ∈ V
2723, 10, 26fvmpt 6249 . . . . . . . . . . . 12 (𝑧 ∈ ℝ → (𝐺𝑧) = if(𝑧𝐴, (𝐹𝑧), 0))
2827adantl 482 . . . . . . . . . . 11 ((((𝐹 ∈ dom ∫1𝐴 ∈ dom vol) ∧ 𝑦 ∈ (ran 𝐺 ∖ {0})) ∧ 𝑧 ∈ ℝ) → (𝐺𝑧) = if(𝑧𝐴, (𝐹𝑧), 0))
2928eqeq1d 2623 . . . . . . . . . 10 ((((𝐹 ∈ dom ∫1𝐴 ∈ dom vol) ∧ 𝑦 ∈ (ran 𝐺 ∖ {0})) ∧ 𝑧 ∈ ℝ) → ((𝐺𝑧) = 𝑦 ↔ if(𝑧𝐴, (𝐹𝑧), 0) = 𝑦))
30 eldifsni 4296 . . . . . . . . . . . . . . 15 (𝑦 ∈ (ran 𝐺 ∖ {0}) → 𝑦 ≠ 0)
3130ad2antlr 762 . . . . . . . . . . . . . 14 ((((𝐹 ∈ dom ∫1𝐴 ∈ dom vol) ∧ 𝑦 ∈ (ran 𝐺 ∖ {0})) ∧ 𝑧 ∈ ℝ) → 𝑦 ≠ 0)
3231necomd 2845 . . . . . . . . . . . . 13 ((((𝐹 ∈ dom ∫1𝐴 ∈ dom vol) ∧ 𝑦 ∈ (ran 𝐺 ∖ {0})) ∧ 𝑧 ∈ ℝ) → 0 ≠ 𝑦)
33 iffalse 4073 . . . . . . . . . . . . . 14 𝑧𝐴 → if(𝑧𝐴, (𝐹𝑧), 0) = 0)
3433neeq1d 2849 . . . . . . . . . . . . 13 𝑧𝐴 → (if(𝑧𝐴, (𝐹𝑧), 0) ≠ 𝑦 ↔ 0 ≠ 𝑦))
3532, 34syl5ibrcom 237 . . . . . . . . . . . 12 ((((𝐹 ∈ dom ∫1𝐴 ∈ dom vol) ∧ 𝑦 ∈ (ran 𝐺 ∖ {0})) ∧ 𝑧 ∈ ℝ) → (¬ 𝑧𝐴 → if(𝑧𝐴, (𝐹𝑧), 0) ≠ 𝑦))
3635necon4bd 2810 . . . . . . . . . . 11 ((((𝐹 ∈ dom ∫1𝐴 ∈ dom vol) ∧ 𝑦 ∈ (ran 𝐺 ∖ {0})) ∧ 𝑧 ∈ ℝ) → (if(𝑧𝐴, (𝐹𝑧), 0) = 𝑦𝑧𝐴))
3736pm4.71rd 666 . . . . . . . . . 10 ((((𝐹 ∈ dom ∫1𝐴 ∈ dom vol) ∧ 𝑦 ∈ (ran 𝐺 ∖ {0})) ∧ 𝑧 ∈ ℝ) → (if(𝑧𝐴, (𝐹𝑧), 0) = 𝑦 ↔ (𝑧𝐴 ∧ if(𝑧𝐴, (𝐹𝑧), 0) = 𝑦)))
3829, 37bitrd 268 . . . . . . . . 9 ((((𝐹 ∈ dom ∫1𝐴 ∈ dom vol) ∧ 𝑦 ∈ (ran 𝐺 ∖ {0})) ∧ 𝑧 ∈ ℝ) → ((𝐺𝑧) = 𝑦 ↔ (𝑧𝐴 ∧ if(𝑧𝐴, (𝐹𝑧), 0) = 𝑦)))
39 iftrue 4070 . . . . . . . . . . 11 (𝑧𝐴 → if(𝑧𝐴, (𝐹𝑧), 0) = (𝐹𝑧))
4039eqeq1d 2623 . . . . . . . . . 10 (𝑧𝐴 → (if(𝑧𝐴, (𝐹𝑧), 0) = 𝑦 ↔ (𝐹𝑧) = 𝑦))
4140pm5.32i 668 . . . . . . . . 9 ((𝑧𝐴 ∧ if(𝑧𝐴, (𝐹𝑧), 0) = 𝑦) ↔ (𝑧𝐴 ∧ (𝐹𝑧) = 𝑦))
4238, 41syl6bb 276 . . . . . . . 8 ((((𝐹 ∈ dom ∫1𝐴 ∈ dom vol) ∧ 𝑦 ∈ (ran 𝐺 ∖ {0})) ∧ 𝑧 ∈ ℝ) → ((𝐺𝑧) = 𝑦 ↔ (𝑧𝐴 ∧ (𝐹𝑧) = 𝑦)))
4342pm5.32da 672 . . . . . . 7 (((𝐹 ∈ dom ∫1𝐴 ∈ dom vol) ∧ 𝑦 ∈ (ran 𝐺 ∖ {0})) → ((𝑧 ∈ ℝ ∧ (𝐺𝑧) = 𝑦) ↔ (𝑧 ∈ ℝ ∧ (𝑧𝐴 ∧ (𝐹𝑧) = 𝑦))))
44 an12 837 . . . . . . 7 ((𝑧 ∈ ℝ ∧ (𝑧𝐴 ∧ (𝐹𝑧) = 𝑦)) ↔ (𝑧𝐴 ∧ (𝑧 ∈ ℝ ∧ (𝐹𝑧) = 𝑦)))
4543, 44syl6bb 276 . . . . . 6 (((𝐹 ∈ dom ∫1𝐴 ∈ dom vol) ∧ 𝑦 ∈ (ran 𝐺 ∖ {0})) → ((𝑧 ∈ ℝ ∧ (𝐺𝑧) = 𝑦) ↔ (𝑧𝐴 ∧ (𝑧 ∈ ℝ ∧ (𝐹𝑧) = 𝑦))))
46 ffn 6012 . . . . . . . . 9 (𝐺:ℝ⟶ran 𝐹𝐺 Fn ℝ)
4711, 46syl 17 . . . . . . . 8 ((𝐹 ∈ dom ∫1𝐴 ∈ dom vol) → 𝐺 Fn ℝ)
4847adantr 481 . . . . . . 7 (((𝐹 ∈ dom ∫1𝐴 ∈ dom vol) ∧ 𝑦 ∈ (ran 𝐺 ∖ {0})) → 𝐺 Fn ℝ)
49 fniniseg 6304 . . . . . . 7 (𝐺 Fn ℝ → (𝑧 ∈ (𝐺 “ {𝑦}) ↔ (𝑧 ∈ ℝ ∧ (𝐺𝑧) = 𝑦)))
5048, 49syl 17 . . . . . 6 (((𝐹 ∈ dom ∫1𝐴 ∈ dom vol) ∧ 𝑦 ∈ (ran 𝐺 ∖ {0})) → (𝑧 ∈ (𝐺 “ {𝑦}) ↔ (𝑧 ∈ ℝ ∧ (𝐺𝑧) = 𝑦)))
514adantr 481 . . . . . . . 8 (((𝐹 ∈ dom ∫1𝐴 ∈ dom vol) ∧ 𝑦 ∈ (ran 𝐺 ∖ {0})) → 𝐹 Fn ℝ)
52 fniniseg 6304 . . . . . . . 8 (𝐹 Fn ℝ → (𝑧 ∈ (𝐹 “ {𝑦}) ↔ (𝑧 ∈ ℝ ∧ (𝐹𝑧) = 𝑦)))
5351, 52syl 17 . . . . . . 7 (((𝐹 ∈ dom ∫1𝐴 ∈ dom vol) ∧ 𝑦 ∈ (ran 𝐺 ∖ {0})) → (𝑧 ∈ (𝐹 “ {𝑦}) ↔ (𝑧 ∈ ℝ ∧ (𝐹𝑧) = 𝑦)))
5453anbi2d 739 . . . . . 6 (((𝐹 ∈ dom ∫1𝐴 ∈ dom vol) ∧ 𝑦 ∈ (ran 𝐺 ∖ {0})) → ((𝑧𝐴𝑧 ∈ (𝐹 “ {𝑦})) ↔ (𝑧𝐴 ∧ (𝑧 ∈ ℝ ∧ (𝐹𝑧) = 𝑦))))
5545, 50, 543bitr4d 300 . . . . 5 (((𝐹 ∈ dom ∫1𝐴 ∈ dom vol) ∧ 𝑦 ∈ (ran 𝐺 ∖ {0})) → (𝑧 ∈ (𝐺 “ {𝑦}) ↔ (𝑧𝐴𝑧 ∈ (𝐹 “ {𝑦}))))
56 elin 3780 . . . . 5 (𝑧 ∈ (𝐴 ∩ (𝐹 “ {𝑦})) ↔ (𝑧𝐴𝑧 ∈ (𝐹 “ {𝑦})))
5755, 56syl6bbr 278 . . . 4 (((𝐹 ∈ dom ∫1𝐴 ∈ dom vol) ∧ 𝑦 ∈ (ran 𝐺 ∖ {0})) → (𝑧 ∈ (𝐺 “ {𝑦}) ↔ 𝑧 ∈ (𝐴 ∩ (𝐹 “ {𝑦}))))
5857eqrdv 2619 . . 3 (((𝐹 ∈ dom ∫1𝐴 ∈ dom vol) ∧ 𝑦 ∈ (ran 𝐺 ∖ {0})) → (𝐺 “ {𝑦}) = (𝐴 ∩ (𝐹 “ {𝑦})))
59 simplr 791 . . . 4 (((𝐹 ∈ dom ∫1𝐴 ∈ dom vol) ∧ 𝑦 ∈ (ran 𝐺 ∖ {0})) → 𝐴 ∈ dom vol)
60 i1fima 23385 . . . . 5 (𝐹 ∈ dom ∫1 → (𝐹 “ {𝑦}) ∈ dom vol)
6160ad2antrr 761 . . . 4 (((𝐹 ∈ dom ∫1𝐴 ∈ dom vol) ∧ 𝑦 ∈ (ran 𝐺 ∖ {0})) → (𝐹 “ {𝑦}) ∈ dom vol)
62 inmbl 23250 . . . 4 ((𝐴 ∈ dom vol ∧ (𝐹 “ {𝑦}) ∈ dom vol) → (𝐴 ∩ (𝐹 “ {𝑦})) ∈ dom vol)
6359, 61, 62syl2anc 692 . . 3 (((𝐹 ∈ dom ∫1𝐴 ∈ dom vol) ∧ 𝑦 ∈ (ran 𝐺 ∖ {0})) → (𝐴 ∩ (𝐹 “ {𝑦})) ∈ dom vol)
6458, 63eqeltrd 2698 . 2 (((𝐹 ∈ dom ∫1𝐴 ∈ dom vol) ∧ 𝑦 ∈ (ran 𝐺 ∖ {0})) → (𝐺 “ {𝑦}) ∈ dom vol)
6558fveq2d 6162 . . . 4 (((𝐹 ∈ dom ∫1𝐴 ∈ dom vol) ∧ 𝑦 ∈ (ran 𝐺 ∖ {0})) → (vol‘(𝐺 “ {𝑦})) = (vol‘(𝐴 ∩ (𝐹 “ {𝑦}))))
66 mblvol 23238 . . . . 5 ((𝐴 ∩ (𝐹 “ {𝑦})) ∈ dom vol → (vol‘(𝐴 ∩ (𝐹 “ {𝑦}))) = (vol*‘(𝐴 ∩ (𝐹 “ {𝑦}))))
6763, 66syl 17 . . . 4 (((𝐹 ∈ dom ∫1𝐴 ∈ dom vol) ∧ 𝑦 ∈ (ran 𝐺 ∖ {0})) → (vol‘(𝐴 ∩ (𝐹 “ {𝑦}))) = (vol*‘(𝐴 ∩ (𝐹 “ {𝑦}))))
6865, 67eqtrd 2655 . . 3 (((𝐹 ∈ dom ∫1𝐴 ∈ dom vol) ∧ 𝑦 ∈ (ran 𝐺 ∖ {0})) → (vol‘(𝐺 “ {𝑦})) = (vol*‘(𝐴 ∩ (𝐹 “ {𝑦}))))
69 inss2 3818 . . . . 5 (𝐴 ∩ (𝐹 “ {𝑦})) ⊆ (𝐹 “ {𝑦})
7069a1i 11 . . . 4 (((𝐹 ∈ dom ∫1𝐴 ∈ dom vol) ∧ 𝑦 ∈ (ran 𝐺 ∖ {0})) → (𝐴 ∩ (𝐹 “ {𝑦})) ⊆ (𝐹 “ {𝑦}))
71 mblss 23239 . . . . 5 ((𝐹 “ {𝑦}) ∈ dom vol → (𝐹 “ {𝑦}) ⊆ ℝ)
7261, 71syl 17 . . . 4 (((𝐹 ∈ dom ∫1𝐴 ∈ dom vol) ∧ 𝑦 ∈ (ran 𝐺 ∖ {0})) → (𝐹 “ {𝑦}) ⊆ ℝ)
73 mblvol 23238 . . . . . 6 ((𝐹 “ {𝑦}) ∈ dom vol → (vol‘(𝐹 “ {𝑦})) = (vol*‘(𝐹 “ {𝑦})))
7461, 73syl 17 . . . . 5 (((𝐹 ∈ dom ∫1𝐴 ∈ dom vol) ∧ 𝑦 ∈ (ran 𝐺 ∖ {0})) → (vol‘(𝐹 “ {𝑦})) = (vol*‘(𝐹 “ {𝑦})))
75 i1fima2sn 23387 . . . . . 6 ((𝐹 ∈ dom ∫1𝑦 ∈ (ran 𝐺 ∖ {0})) → (vol‘(𝐹 “ {𝑦})) ∈ ℝ)
7675adantlr 750 . . . . 5 (((𝐹 ∈ dom ∫1𝐴 ∈ dom vol) ∧ 𝑦 ∈ (ran 𝐺 ∖ {0})) → (vol‘(𝐹 “ {𝑦})) ∈ ℝ)
7774, 76eqeltrrd 2699 . . . 4 (((𝐹 ∈ dom ∫1𝐴 ∈ dom vol) ∧ 𝑦 ∈ (ran 𝐺 ∖ {0})) → (vol*‘(𝐹 “ {𝑦})) ∈ ℝ)
78 ovolsscl 23194 . . . 4 (((𝐴 ∩ (𝐹 “ {𝑦})) ⊆ (𝐹 “ {𝑦}) ∧ (𝐹 “ {𝑦}) ⊆ ℝ ∧ (vol*‘(𝐹 “ {𝑦})) ∈ ℝ) → (vol*‘(𝐴 ∩ (𝐹 “ {𝑦}))) ∈ ℝ)
7970, 72, 77, 78syl3anc 1323 . . 3 (((𝐹 ∈ dom ∫1𝐴 ∈ dom vol) ∧ 𝑦 ∈ (ran 𝐺 ∖ {0})) → (vol*‘(𝐴 ∩ (𝐹 “ {𝑦}))) ∈ ℝ)
8068, 79eqeltrd 2698 . 2 (((𝐹 ∈ dom ∫1𝐴 ∈ dom vol) ∧ 𝑦 ∈ (ran 𝐺 ∖ {0})) → (vol‘(𝐺 “ {𝑦})) ∈ ℝ)
8114, 20, 64, 80i1fd 23388 1 ((𝐹 ∈ dom ∫1𝐴 ∈ dom vol) → 𝐺 ∈ dom ∫1)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 196  wa 384   = wceq 1480  wcel 1987  wne 2790  cdif 3557  cin 3559  wss 3560  ifcif 4064  {csn 4155  cmpt 4683  ccnv 5083  dom cdm 5084  ran crn 5085  cima 5087   Fn wfn 5852  wf 5853  cfv 5857  Fincfn 7915  cr 9895  0cc0 9896  vol*covol 23171  volcvol 23172  1citg1 23324
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-8 1989  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601  ax-rep 4741  ax-sep 4751  ax-nul 4759  ax-pow 4813  ax-pr 4877  ax-un 6914  ax-inf2 8498  ax-cnex 9952  ax-resscn 9953  ax-1cn 9954  ax-icn 9955  ax-addcl 9956  ax-addrcl 9957  ax-mulcl 9958  ax-mulrcl 9959  ax-mulcom 9960  ax-addass 9961  ax-mulass 9962  ax-distr 9963  ax-i2m1 9964  ax-1ne0 9965  ax-1rid 9966  ax-rnegex 9967  ax-rrecex 9968  ax-cnre 9969  ax-pre-lttri 9970  ax-pre-lttrn 9971  ax-pre-ltadd 9972  ax-pre-mulgt0 9973  ax-pre-sup 9974
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1037  df-3an 1038  df-tru 1483  df-fal 1486  df-ex 1702  df-nf 1707  df-sb 1878  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-ne 2791  df-nel 2894  df-ral 2913  df-rex 2914  df-reu 2915  df-rmo 2916  df-rab 2917  df-v 3192  df-sbc 3423  df-csb 3520  df-dif 3563  df-un 3565  df-in 3567  df-ss 3574  df-pss 3576  df-nul 3898  df-if 4065  df-pw 4138  df-sn 4156  df-pr 4158  df-tp 4160  df-op 4162  df-uni 4410  df-int 4448  df-iun 4494  df-br 4624  df-opab 4684  df-mpt 4685  df-tr 4723  df-eprel 4995  df-id 4999  df-po 5005  df-so 5006  df-fr 5043  df-se 5044  df-we 5045  df-xp 5090  df-rel 5091  df-cnv 5092  df-co 5093  df-dm 5094  df-rn 5095  df-res 5096  df-ima 5097  df-pred 5649  df-ord 5695  df-on 5696  df-lim 5697  df-suc 5698  df-iota 5820  df-fun 5859  df-fn 5860  df-f 5861  df-f1 5862  df-fo 5863  df-f1o 5864  df-fv 5865  df-isom 5866  df-riota 6576  df-ov 6618  df-oprab 6619  df-mpt2 6620  df-of 6862  df-om 7028  df-1st 7128  df-2nd 7129  df-wrecs 7367  df-recs 7428  df-rdg 7466  df-1o 7520  df-2o 7521  df-oadd 7524  df-er 7702  df-map 7819  df-pm 7820  df-en 7916  df-dom 7917  df-sdom 7918  df-fin 7919  df-fi 8277  df-sup 8308  df-inf 8309  df-oi 8375  df-card 8725  df-cda 8950  df-pnf 10036  df-mnf 10037  df-xr 10038  df-ltxr 10039  df-le 10040  df-sub 10228  df-neg 10229  df-div 10645  df-nn 10981  df-2 11039  df-3 11040  df-n0 11253  df-z 11338  df-uz 11648  df-q 11749  df-rp 11793  df-xneg 11906  df-xadd 11907  df-xmul 11908  df-ioo 12137  df-ico 12139  df-icc 12140  df-fz 12285  df-fzo 12423  df-fl 12549  df-seq 12758  df-exp 12817  df-hash 13074  df-cj 13789  df-re 13790  df-im 13791  df-sqrt 13925  df-abs 13926  df-clim 14169  df-sum 14367  df-rest 16023  df-topgen 16044  df-psmet 19678  df-xmet 19679  df-met 19680  df-bl 19681  df-mopn 19682  df-top 20639  df-topon 20656  df-bases 20690  df-cmp 21130  df-ovol 23173  df-vol 23174  df-mbf 23328  df-itg1 23329
This theorem is referenced by:  i1fpos  23413  itg1climres  23421  itg2uba  23450  itg2splitlem  23455  itg2monolem1  23457  ftc1anclem5  33160  ftc1anclem7  33162
  Copyright terms: Public domain W3C validator