Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  ibl0 Structured version   Visualization version   GIF version

Theorem ibl0 23772
 Description: The zero function is integrable on any measurable set. (Unlike iblconst 23803, this does not require 𝐴 to have finite measure.) (Contributed by Mario Carneiro, 23-Aug-2014.)
Assertion
Ref Expression
ibl0 (𝐴 ∈ dom vol → (𝐴 × {0}) ∈ 𝐿1)

Proof of Theorem ibl0
Dummy variables 𝑥 𝑘 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 0cn 10244 . . 3 0 ∈ ℂ
2 mbfconst 23621 . . 3 ((𝐴 ∈ dom vol ∧ 0 ∈ ℂ) → (𝐴 × {0}) ∈ MblFn)
31, 2mpan2 709 . 2 (𝐴 ∈ dom vol → (𝐴 × {0}) ∈ MblFn)
4 elfzelz 12555 . . . . . . . . 9 (𝑘 ∈ (0...3) → 𝑘 ∈ ℤ)
54ad2antlr 765 . . . . . . . 8 (((𝐴 ∈ dom vol ∧ 𝑘 ∈ (0...3)) ∧ 𝑥𝐴) → 𝑘 ∈ ℤ)
6 ax-icn 10207 . . . . . . . . 9 i ∈ ℂ
7 ine0 10677 . . . . . . . . 9 i ≠ 0
8 expclz 13099 . . . . . . . . . 10 ((i ∈ ℂ ∧ i ≠ 0 ∧ 𝑘 ∈ ℤ) → (i↑𝑘) ∈ ℂ)
9 expne0i 13106 . . . . . . . . . 10 ((i ∈ ℂ ∧ i ≠ 0 ∧ 𝑘 ∈ ℤ) → (i↑𝑘) ≠ 0)
108, 9div0d 11012 . . . . . . . . 9 ((i ∈ ℂ ∧ i ≠ 0 ∧ 𝑘 ∈ ℤ) → (0 / (i↑𝑘)) = 0)
116, 7, 10mp3an12 1563 . . . . . . . 8 (𝑘 ∈ ℤ → (0 / (i↑𝑘)) = 0)
125, 11syl 17 . . . . . . 7 (((𝐴 ∈ dom vol ∧ 𝑘 ∈ (0...3)) ∧ 𝑥𝐴) → (0 / (i↑𝑘)) = 0)
1312fveq2d 6357 . . . . . 6 (((𝐴 ∈ dom vol ∧ 𝑘 ∈ (0...3)) ∧ 𝑥𝐴) → (ℜ‘(0 / (i↑𝑘))) = (ℜ‘0))
14 re0 14111 . . . . . 6 (ℜ‘0) = 0
1513, 14syl6eq 2810 . . . . 5 (((𝐴 ∈ dom vol ∧ 𝑘 ∈ (0...3)) ∧ 𝑥𝐴) → (ℜ‘(0 / (i↑𝑘))) = 0)
1615itgvallem3 23771 . . . 4 ((𝐴 ∈ dom vol ∧ 𝑘 ∈ (0...3)) → (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ (ℜ‘(0 / (i↑𝑘)))), (ℜ‘(0 / (i↑𝑘))), 0))) = 0)
17 0re 10252 . . . 4 0 ∈ ℝ
1816, 17syl6eqel 2847 . . 3 ((𝐴 ∈ dom vol ∧ 𝑘 ∈ (0...3)) → (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ (ℜ‘(0 / (i↑𝑘)))), (ℜ‘(0 / (i↑𝑘))), 0))) ∈ ℝ)
1918ralrimiva 3104 . 2 (𝐴 ∈ dom vol → ∀𝑘 ∈ (0...3)(∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ (ℜ‘(0 / (i↑𝑘)))), (ℜ‘(0 / (i↑𝑘))), 0))) ∈ ℝ)
20 eqidd 2761 . . 3 (𝐴 ∈ dom vol → (𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ (ℜ‘(0 / (i↑𝑘)))), (ℜ‘(0 / (i↑𝑘))), 0)) = (𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ (ℜ‘(0 / (i↑𝑘)))), (ℜ‘(0 / (i↑𝑘))), 0)))
21 eqidd 2761 . . 3 ((𝐴 ∈ dom vol ∧ 𝑥𝐴) → (ℜ‘(0 / (i↑𝑘))) = (ℜ‘(0 / (i↑𝑘))))
22 c0ex 10246 . . . . 5 0 ∈ V
2322fconst 6252 . . . 4 (𝐴 × {0}):𝐴⟶{0}
24 fdm 6212 . . . 4 ((𝐴 × {0}):𝐴⟶{0} → dom (𝐴 × {0}) = 𝐴)
2523, 24mp1i 13 . . 3 (𝐴 ∈ dom vol → dom (𝐴 × {0}) = 𝐴)
2622fvconst2 6634 . . . 4 (𝑥𝐴 → ((𝐴 × {0})‘𝑥) = 0)
2726adantl 473 . . 3 ((𝐴 ∈ dom vol ∧ 𝑥𝐴) → ((𝐴 × {0})‘𝑥) = 0)
2820, 21, 25, 27isibl 23751 . 2 (𝐴 ∈ dom vol → ((𝐴 × {0}) ∈ 𝐿1 ↔ ((𝐴 × {0}) ∈ MblFn ∧ ∀𝑘 ∈ (0...3)(∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ (ℜ‘(0 / (i↑𝑘)))), (ℜ‘(0 / (i↑𝑘))), 0))) ∈ ℝ)))
293, 19, 28mpbir2and 995 1 (𝐴 ∈ dom vol → (𝐴 × {0}) ∈ 𝐿1)
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ∧ wa 383   ∧ w3a 1072   = wceq 1632   ∈ wcel 2139   ≠ wne 2932  ∀wral 3050  ifcif 4230  {csn 4321   class class class wbr 4804   ↦ cmpt 4881   × cxp 5264  dom cdm 5266  ⟶wf 6045  ‘cfv 6049  (class class class)co 6814  ℂcc 10146  ℝcr 10147  0cc0 10148  ici 10150   ≤ cle 10287   / cdiv 10896  3c3 11283  ℤcz 11589  ...cfz 12539  ↑cexp 13074  ℜcre 14056  volcvol 23452  MblFncmbf 23602  ∫2citg2 23604  𝐿1cibl 23605 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1871  ax-4 1886  ax-5 1988  ax-6 2054  ax-7 2090  ax-8 2141  ax-9 2148  ax-10 2168  ax-11 2183  ax-12 2196  ax-13 2391  ax-ext 2740  ax-rep 4923  ax-sep 4933  ax-nul 4941  ax-pow 4992  ax-pr 5055  ax-un 7115  ax-inf2 8713  ax-cnex 10204  ax-resscn 10205  ax-1cn 10206  ax-icn 10207  ax-addcl 10208  ax-addrcl 10209  ax-mulcl 10210  ax-mulrcl 10211  ax-mulcom 10212  ax-addass 10213  ax-mulass 10214  ax-distr 10215  ax-i2m1 10216  ax-1ne0 10217  ax-1rid 10218  ax-rnegex 10219  ax-rrecex 10220  ax-cnre 10221  ax-pre-lttri 10222  ax-pre-lttrn 10223  ax-pre-ltadd 10224  ax-pre-mulgt0 10225  ax-pre-sup 10226  ax-addf 10227 This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1073  df-3an 1074  df-tru 1635  df-fal 1638  df-ex 1854  df-nf 1859  df-sb 2047  df-eu 2611  df-mo 2612  df-clab 2747  df-cleq 2753  df-clel 2756  df-nfc 2891  df-ne 2933  df-nel 3036  df-ral 3055  df-rex 3056  df-reu 3057  df-rmo 3058  df-rab 3059  df-v 3342  df-sbc 3577  df-csb 3675  df-dif 3718  df-un 3720  df-in 3722  df-ss 3729  df-pss 3731  df-nul 4059  df-if 4231  df-pw 4304  df-sn 4322  df-pr 4324  df-tp 4326  df-op 4328  df-uni 4589  df-int 4628  df-iun 4674  df-disj 4773  df-br 4805  df-opab 4865  df-mpt 4882  df-tr 4905  df-id 5174  df-eprel 5179  df-po 5187  df-so 5188  df-fr 5225  df-se 5226  df-we 5227  df-xp 5272  df-rel 5273  df-cnv 5274  df-co 5275  df-dm 5276  df-rn 5277  df-res 5278  df-ima 5279  df-pred 5841  df-ord 5887  df-on 5888  df-lim 5889  df-suc 5890  df-iota 6012  df-fun 6051  df-fn 6052  df-f 6053  df-f1 6054  df-fo 6055  df-f1o 6056  df-fv 6057  df-isom 6058  df-riota 6775  df-ov 6817  df-oprab 6818  df-mpt2 6819  df-of 7063  df-ofr 7064  df-om 7232  df-1st 7334  df-2nd 7335  df-wrecs 7577  df-recs 7638  df-rdg 7676  df-1o 7730  df-2o 7731  df-oadd 7734  df-er 7913  df-map 8027  df-pm 8028  df-en 8124  df-dom 8125  df-sdom 8126  df-fin 8127  df-sup 8515  df-inf 8516  df-oi 8582  df-card 8975  df-cda 9202  df-pnf 10288  df-mnf 10289  df-xr 10290  df-ltxr 10291  df-le 10292  df-sub 10480  df-neg 10481  df-div 10897  df-nn 11233  df-2 11291  df-3 11292  df-n0 11505  df-z 11590  df-uz 11900  df-q 12002  df-rp 12046  df-xadd 12160  df-ioo 12392  df-ico 12394  df-icc 12395  df-fz 12540  df-fzo 12680  df-fl 12807  df-seq 13016  df-exp 13075  df-hash 13332  df-cj 14058  df-re 14059  df-im 14060  df-sqrt 14194  df-abs 14195  df-clim 14438  df-sum 14636  df-xmet 19961  df-met 19962  df-ovol 23453  df-vol 23454  df-mbf 23607  df-itg1 23608  df-itg2 23609  df-ibl 23610  df-0p 23656 This theorem is referenced by:  itgge0  23796  itgfsum  23812  bddiblnc  33811
 Copyright terms: Public domain W3C validator