MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  iblabslem Structured version   Visualization version   GIF version

Theorem iblabslem 23344
Description: Lemma for iblabs 23345. (Contributed by Mario Carneiro, 25-Aug-2014.)
Hypotheses
Ref Expression
iblabs.1 ((𝜑𝑥𝐴) → 𝐵𝑉)
iblabs.2 (𝜑 → (𝑥𝐴𝐵) ∈ 𝐿1)
iblabs.3 𝐺 = (𝑥 ∈ ℝ ↦ if(𝑥𝐴, (abs‘(𝐹𝐵)), 0))
iblabs.4 (𝜑 → (𝑥𝐴 ↦ (𝐹𝐵)) ∈ 𝐿1)
iblabs.5 ((𝜑𝑥𝐴) → (𝐹𝐵) ∈ ℝ)
Assertion
Ref Expression
iblabslem (𝜑 → (𝐺 ∈ MblFn ∧ (∫2𝐺) ∈ ℝ))
Distinct variable groups:   𝑥,𝐴   𝜑,𝑥
Allowed substitution hints:   𝐵(𝑥)   𝐹(𝑥)   𝐺(𝑥)   𝑉(𝑥)

Proof of Theorem iblabslem
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 iblabs.3 . . 3 𝐺 = (𝑥 ∈ ℝ ↦ if(𝑥𝐴, (abs‘(𝐹𝐵)), 0))
2 iblabs.4 . . . . . . . 8 (𝜑 → (𝑥𝐴 ↦ (𝐹𝐵)) ∈ 𝐿1)
3 iblabs.5 . . . . . . . . 9 ((𝜑𝑥𝐴) → (𝐹𝐵) ∈ ℝ)
43iblrelem 23307 . . . . . . . 8 (𝜑 → ((𝑥𝐴 ↦ (𝐹𝐵)) ∈ 𝐿1 ↔ ((𝑥𝐴 ↦ (𝐹𝐵)) ∈ MblFn ∧ (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ (𝐹𝐵)), (𝐹𝐵), 0))) ∈ ℝ ∧ (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ -(𝐹𝐵)), -(𝐹𝐵), 0))) ∈ ℝ)))
52, 4mpbid 220 . . . . . . 7 (𝜑 → ((𝑥𝐴 ↦ (𝐹𝐵)) ∈ MblFn ∧ (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ (𝐹𝐵)), (𝐹𝐵), 0))) ∈ ℝ ∧ (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ -(𝐹𝐵)), -(𝐹𝐵), 0))) ∈ ℝ))
65simp1d 1065 . . . . . 6 (𝜑 → (𝑥𝐴 ↦ (𝐹𝐵)) ∈ MblFn)
76, 3mbfdm2 23155 . . . . 5 (𝜑𝐴 ∈ dom vol)
8 mblss 23050 . . . . 5 (𝐴 ∈ dom vol → 𝐴 ⊆ ℝ)
97, 8syl 17 . . . 4 (𝜑𝐴 ⊆ ℝ)
10 rembl 23059 . . . . 5 ℝ ∈ dom vol
1110a1i 11 . . . 4 (𝜑 → ℝ ∈ dom vol)
12 iftrue 4041 . . . . . 6 (𝑥𝐴 → if(𝑥𝐴, (abs‘(𝐹𝐵)), 0) = (abs‘(𝐹𝐵)))
1312adantl 480 . . . . 5 ((𝜑𝑥𝐴) → if(𝑥𝐴, (abs‘(𝐹𝐵)), 0) = (abs‘(𝐹𝐵)))
143recnd 9924 . . . . . 6 ((𝜑𝑥𝐴) → (𝐹𝐵) ∈ ℂ)
1514abscld 13971 . . . . 5 ((𝜑𝑥𝐴) → (abs‘(𝐹𝐵)) ∈ ℝ)
1613, 15eqeltrd 2687 . . . 4 ((𝜑𝑥𝐴) → if(𝑥𝐴, (abs‘(𝐹𝐵)), 0) ∈ ℝ)
17 eldifn 3694 . . . . . 6 (𝑥 ∈ (ℝ ∖ 𝐴) → ¬ 𝑥𝐴)
1817adantl 480 . . . . 5 ((𝜑𝑥 ∈ (ℝ ∖ 𝐴)) → ¬ 𝑥𝐴)
19 iffalse 4044 . . . . 5 𝑥𝐴 → if(𝑥𝐴, (abs‘(𝐹𝐵)), 0) = 0)
2018, 19syl 17 . . . 4 ((𝜑𝑥 ∈ (ℝ ∖ 𝐴)) → if(𝑥𝐴, (abs‘(𝐹𝐵)), 0) = 0)
21 eqidd 2610 . . . . . . 7 (𝜑 → (𝑥𝐴 ↦ (𝐹𝐵)) = (𝑥𝐴 ↦ (𝐹𝐵)))
22 absf 13873 . . . . . . . . 9 abs:ℂ⟶ℝ
2322a1i 11 . . . . . . . 8 (𝜑 → abs:ℂ⟶ℝ)
2423feqmptd 6143 . . . . . . 7 (𝜑 → abs = (𝑦 ∈ ℂ ↦ (abs‘𝑦)))
25 fveq2 6087 . . . . . . 7 (𝑦 = (𝐹𝐵) → (abs‘𝑦) = (abs‘(𝐹𝐵)))
2614, 21, 24, 25fmptco 6287 . . . . . 6 (𝜑 → (abs ∘ (𝑥𝐴 ↦ (𝐹𝐵))) = (𝑥𝐴 ↦ (abs‘(𝐹𝐵))))
2712mpteq2ia 4662 . . . . . 6 (𝑥𝐴 ↦ if(𝑥𝐴, (abs‘(𝐹𝐵)), 0)) = (𝑥𝐴 ↦ (abs‘(𝐹𝐵)))
2826, 27syl6reqr 2662 . . . . 5 (𝜑 → (𝑥𝐴 ↦ if(𝑥𝐴, (abs‘(𝐹𝐵)), 0)) = (abs ∘ (𝑥𝐴 ↦ (𝐹𝐵))))
29 eqid 2609 . . . . . . 7 (𝑥𝐴 ↦ (𝐹𝐵)) = (𝑥𝐴 ↦ (𝐹𝐵))
3014, 29fmptd 6276 . . . . . 6 (𝜑 → (𝑥𝐴 ↦ (𝐹𝐵)):𝐴⟶ℂ)
31 ax-resscn 9849 . . . . . . . . 9 ℝ ⊆ ℂ
32 ssid 3586 . . . . . . . . 9 ℂ ⊆ ℂ
33 cncfss 22457 . . . . . . . . 9 ((ℝ ⊆ ℂ ∧ ℂ ⊆ ℂ) → (ℂ–cn→ℝ) ⊆ (ℂ–cn→ℂ))
3431, 32, 33mp2an 703 . . . . . . . 8 (ℂ–cn→ℝ) ⊆ (ℂ–cn→ℂ)
35 abscncf 22459 . . . . . . . 8 abs ∈ (ℂ–cn→ℝ)
3634, 35sselii 3564 . . . . . . 7 abs ∈ (ℂ–cn→ℂ)
3736a1i 11 . . . . . 6 (𝜑 → abs ∈ (ℂ–cn→ℂ))
38 cncombf 23175 . . . . . 6 (((𝑥𝐴 ↦ (𝐹𝐵)) ∈ MblFn ∧ (𝑥𝐴 ↦ (𝐹𝐵)):𝐴⟶ℂ ∧ abs ∈ (ℂ–cn→ℂ)) → (abs ∘ (𝑥𝐴 ↦ (𝐹𝐵))) ∈ MblFn)
396, 30, 37, 38syl3anc 1317 . . . . 5 (𝜑 → (abs ∘ (𝑥𝐴 ↦ (𝐹𝐵))) ∈ MblFn)
4028, 39eqeltrd 2687 . . . 4 (𝜑 → (𝑥𝐴 ↦ if(𝑥𝐴, (abs‘(𝐹𝐵)), 0)) ∈ MblFn)
419, 11, 16, 20, 40mbfss 23163 . . 3 (𝜑 → (𝑥 ∈ ℝ ↦ if(𝑥𝐴, (abs‘(𝐹𝐵)), 0)) ∈ MblFn)
421, 41syl5eqel 2691 . 2 (𝜑𝐺 ∈ MblFn)
43 reex 9883 . . . . . . . . 9 ℝ ∈ V
4443a1i 11 . . . . . . . 8 (𝜑 → ℝ ∈ V)
45 ifan 4083 . . . . . . . . . 10 if((𝑥𝐴 ∧ 0 ≤ (𝐹𝐵)), (𝐹𝐵), 0) = if(𝑥𝐴, if(0 ≤ (𝐹𝐵), (𝐹𝐵), 0), 0)
46 0re 9896 . . . . . . . . . . . . 13 0 ∈ ℝ
47 ifcl 4079 . . . . . . . . . . . . 13 (((𝐹𝐵) ∈ ℝ ∧ 0 ∈ ℝ) → if(0 ≤ (𝐹𝐵), (𝐹𝐵), 0) ∈ ℝ)
483, 46, 47sylancl 692 . . . . . . . . . . . 12 ((𝜑𝑥𝐴) → if(0 ≤ (𝐹𝐵), (𝐹𝐵), 0) ∈ ℝ)
49 max1 11851 . . . . . . . . . . . . 13 ((0 ∈ ℝ ∧ (𝐹𝐵) ∈ ℝ) → 0 ≤ if(0 ≤ (𝐹𝐵), (𝐹𝐵), 0))
5046, 3, 49sylancr 693 . . . . . . . . . . . 12 ((𝜑𝑥𝐴) → 0 ≤ if(0 ≤ (𝐹𝐵), (𝐹𝐵), 0))
51 elrege0 12107 . . . . . . . . . . . 12 (if(0 ≤ (𝐹𝐵), (𝐹𝐵), 0) ∈ (0[,)+∞) ↔ (if(0 ≤ (𝐹𝐵), (𝐹𝐵), 0) ∈ ℝ ∧ 0 ≤ if(0 ≤ (𝐹𝐵), (𝐹𝐵), 0)))
5248, 50, 51sylanbrc 694 . . . . . . . . . . 11 ((𝜑𝑥𝐴) → if(0 ≤ (𝐹𝐵), (𝐹𝐵), 0) ∈ (0[,)+∞))
53 0e0icopnf 12111 . . . . . . . . . . . 12 0 ∈ (0[,)+∞)
5453a1i 11 . . . . . . . . . . 11 ((𝜑 ∧ ¬ 𝑥𝐴) → 0 ∈ (0[,)+∞))
5552, 54ifclda 4069 . . . . . . . . . 10 (𝜑 → if(𝑥𝐴, if(0 ≤ (𝐹𝐵), (𝐹𝐵), 0), 0) ∈ (0[,)+∞))
5645, 55syl5eqel 2691 . . . . . . . . 9 (𝜑 → if((𝑥𝐴 ∧ 0 ≤ (𝐹𝐵)), (𝐹𝐵), 0) ∈ (0[,)+∞))
5756adantr 479 . . . . . . . 8 ((𝜑𝑥 ∈ ℝ) → if((𝑥𝐴 ∧ 0 ≤ (𝐹𝐵)), (𝐹𝐵), 0) ∈ (0[,)+∞))
58 ifan 4083 . . . . . . . . . 10 if((𝑥𝐴 ∧ 0 ≤ -(𝐹𝐵)), -(𝐹𝐵), 0) = if(𝑥𝐴, if(0 ≤ -(𝐹𝐵), -(𝐹𝐵), 0), 0)
593renegcld 10308 . . . . . . . . . . . . 13 ((𝜑𝑥𝐴) → -(𝐹𝐵) ∈ ℝ)
60 ifcl 4079 . . . . . . . . . . . . 13 ((-(𝐹𝐵) ∈ ℝ ∧ 0 ∈ ℝ) → if(0 ≤ -(𝐹𝐵), -(𝐹𝐵), 0) ∈ ℝ)
6159, 46, 60sylancl 692 . . . . . . . . . . . 12 ((𝜑𝑥𝐴) → if(0 ≤ -(𝐹𝐵), -(𝐹𝐵), 0) ∈ ℝ)
62 max1 11851 . . . . . . . . . . . . 13 ((0 ∈ ℝ ∧ -(𝐹𝐵) ∈ ℝ) → 0 ≤ if(0 ≤ -(𝐹𝐵), -(𝐹𝐵), 0))
6346, 59, 62sylancr 693 . . . . . . . . . . . 12 ((𝜑𝑥𝐴) → 0 ≤ if(0 ≤ -(𝐹𝐵), -(𝐹𝐵), 0))
64 elrege0 12107 . . . . . . . . . . . 12 (if(0 ≤ -(𝐹𝐵), -(𝐹𝐵), 0) ∈ (0[,)+∞) ↔ (if(0 ≤ -(𝐹𝐵), -(𝐹𝐵), 0) ∈ ℝ ∧ 0 ≤ if(0 ≤ -(𝐹𝐵), -(𝐹𝐵), 0)))
6561, 63, 64sylanbrc 694 . . . . . . . . . . 11 ((𝜑𝑥𝐴) → if(0 ≤ -(𝐹𝐵), -(𝐹𝐵), 0) ∈ (0[,)+∞))
6665, 54ifclda 4069 . . . . . . . . . 10 (𝜑 → if(𝑥𝐴, if(0 ≤ -(𝐹𝐵), -(𝐹𝐵), 0), 0) ∈ (0[,)+∞))
6758, 66syl5eqel 2691 . . . . . . . . 9 (𝜑 → if((𝑥𝐴 ∧ 0 ≤ -(𝐹𝐵)), -(𝐹𝐵), 0) ∈ (0[,)+∞))
6867adantr 479 . . . . . . . 8 ((𝜑𝑥 ∈ ℝ) → if((𝑥𝐴 ∧ 0 ≤ -(𝐹𝐵)), -(𝐹𝐵), 0) ∈ (0[,)+∞))
69 eqidd 2610 . . . . . . . 8 (𝜑 → (𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ (𝐹𝐵)), (𝐹𝐵), 0)) = (𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ (𝐹𝐵)), (𝐹𝐵), 0)))
70 eqidd 2610 . . . . . . . 8 (𝜑 → (𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ -(𝐹𝐵)), -(𝐹𝐵), 0)) = (𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ -(𝐹𝐵)), -(𝐹𝐵), 0)))
7144, 57, 68, 69, 70offval2 6789 . . . . . . 7 (𝜑 → ((𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ (𝐹𝐵)), (𝐹𝐵), 0)) ∘𝑓 + (𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ -(𝐹𝐵)), -(𝐹𝐵), 0))) = (𝑥 ∈ ℝ ↦ (if((𝑥𝐴 ∧ 0 ≤ (𝐹𝐵)), (𝐹𝐵), 0) + if((𝑥𝐴 ∧ 0 ≤ -(𝐹𝐵)), -(𝐹𝐵), 0))))
7245, 58oveq12i 6538 . . . . . . . . 9 (if((𝑥𝐴 ∧ 0 ≤ (𝐹𝐵)), (𝐹𝐵), 0) + if((𝑥𝐴 ∧ 0 ≤ -(𝐹𝐵)), -(𝐹𝐵), 0)) = (if(𝑥𝐴, if(0 ≤ (𝐹𝐵), (𝐹𝐵), 0), 0) + if(𝑥𝐴, if(0 ≤ -(𝐹𝐵), -(𝐹𝐵), 0), 0))
73 max0add 13846 . . . . . . . . . . . . 13 ((𝐹𝐵) ∈ ℝ → (if(0 ≤ (𝐹𝐵), (𝐹𝐵), 0) + if(0 ≤ -(𝐹𝐵), -(𝐹𝐵), 0)) = (abs‘(𝐹𝐵)))
743, 73syl 17 . . . . . . . . . . . 12 ((𝜑𝑥𝐴) → (if(0 ≤ (𝐹𝐵), (𝐹𝐵), 0) + if(0 ≤ -(𝐹𝐵), -(𝐹𝐵), 0)) = (abs‘(𝐹𝐵)))
75 iftrue 4041 . . . . . . . . . . . . . 14 (𝑥𝐴 → if(𝑥𝐴, if(0 ≤ (𝐹𝐵), (𝐹𝐵), 0), 0) = if(0 ≤ (𝐹𝐵), (𝐹𝐵), 0))
7675adantl 480 . . . . . . . . . . . . 13 ((𝜑𝑥𝐴) → if(𝑥𝐴, if(0 ≤ (𝐹𝐵), (𝐹𝐵), 0), 0) = if(0 ≤ (𝐹𝐵), (𝐹𝐵), 0))
77 iftrue 4041 . . . . . . . . . . . . . 14 (𝑥𝐴 → if(𝑥𝐴, if(0 ≤ -(𝐹𝐵), -(𝐹𝐵), 0), 0) = if(0 ≤ -(𝐹𝐵), -(𝐹𝐵), 0))
7877adantl 480 . . . . . . . . . . . . 13 ((𝜑𝑥𝐴) → if(𝑥𝐴, if(0 ≤ -(𝐹𝐵), -(𝐹𝐵), 0), 0) = if(0 ≤ -(𝐹𝐵), -(𝐹𝐵), 0))
7976, 78oveq12d 6544 . . . . . . . . . . . 12 ((𝜑𝑥𝐴) → (if(𝑥𝐴, if(0 ≤ (𝐹𝐵), (𝐹𝐵), 0), 0) + if(𝑥𝐴, if(0 ≤ -(𝐹𝐵), -(𝐹𝐵), 0), 0)) = (if(0 ≤ (𝐹𝐵), (𝐹𝐵), 0) + if(0 ≤ -(𝐹𝐵), -(𝐹𝐵), 0)))
8074, 79, 133eqtr4d 2653 . . . . . . . . . . 11 ((𝜑𝑥𝐴) → (if(𝑥𝐴, if(0 ≤ (𝐹𝐵), (𝐹𝐵), 0), 0) + if(𝑥𝐴, if(0 ≤ -(𝐹𝐵), -(𝐹𝐵), 0), 0)) = if(𝑥𝐴, (abs‘(𝐹𝐵)), 0))
8180ex 448 . . . . . . . . . 10 (𝜑 → (𝑥𝐴 → (if(𝑥𝐴, if(0 ≤ (𝐹𝐵), (𝐹𝐵), 0), 0) + if(𝑥𝐴, if(0 ≤ -(𝐹𝐵), -(𝐹𝐵), 0), 0)) = if(𝑥𝐴, (abs‘(𝐹𝐵)), 0)))
82 00id 10062 . . . . . . . . . . 11 (0 + 0) = 0
83 iffalse 4044 . . . . . . . . . . . 12 𝑥𝐴 → if(𝑥𝐴, if(0 ≤ (𝐹𝐵), (𝐹𝐵), 0), 0) = 0)
84 iffalse 4044 . . . . . . . . . . . 12 𝑥𝐴 → if(𝑥𝐴, if(0 ≤ -(𝐹𝐵), -(𝐹𝐵), 0), 0) = 0)
8583, 84oveq12d 6544 . . . . . . . . . . 11 𝑥𝐴 → (if(𝑥𝐴, if(0 ≤ (𝐹𝐵), (𝐹𝐵), 0), 0) + if(𝑥𝐴, if(0 ≤ -(𝐹𝐵), -(𝐹𝐵), 0), 0)) = (0 + 0))
8682, 85, 193eqtr4a 2669 . . . . . . . . . 10 𝑥𝐴 → (if(𝑥𝐴, if(0 ≤ (𝐹𝐵), (𝐹𝐵), 0), 0) + if(𝑥𝐴, if(0 ≤ -(𝐹𝐵), -(𝐹𝐵), 0), 0)) = if(𝑥𝐴, (abs‘(𝐹𝐵)), 0))
8781, 86pm2.61d1 169 . . . . . . . . 9 (𝜑 → (if(𝑥𝐴, if(0 ≤ (𝐹𝐵), (𝐹𝐵), 0), 0) + if(𝑥𝐴, if(0 ≤ -(𝐹𝐵), -(𝐹𝐵), 0), 0)) = if(𝑥𝐴, (abs‘(𝐹𝐵)), 0))
8872, 87syl5eq 2655 . . . . . . . 8 (𝜑 → (if((𝑥𝐴 ∧ 0 ≤ (𝐹𝐵)), (𝐹𝐵), 0) + if((𝑥𝐴 ∧ 0 ≤ -(𝐹𝐵)), -(𝐹𝐵), 0)) = if(𝑥𝐴, (abs‘(𝐹𝐵)), 0))
8988mpteq2dv 4667 . . . . . . 7 (𝜑 → (𝑥 ∈ ℝ ↦ (if((𝑥𝐴 ∧ 0 ≤ (𝐹𝐵)), (𝐹𝐵), 0) + if((𝑥𝐴 ∧ 0 ≤ -(𝐹𝐵)), -(𝐹𝐵), 0))) = (𝑥 ∈ ℝ ↦ if(𝑥𝐴, (abs‘(𝐹𝐵)), 0)))
9071, 89eqtrd 2643 . . . . . 6 (𝜑 → ((𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ (𝐹𝐵)), (𝐹𝐵), 0)) ∘𝑓 + (𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ -(𝐹𝐵)), -(𝐹𝐵), 0))) = (𝑥 ∈ ℝ ↦ if(𝑥𝐴, (abs‘(𝐹𝐵)), 0)))
9190, 1syl6reqr 2662 . . . . 5 (𝜑𝐺 = ((𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ (𝐹𝐵)), (𝐹𝐵), 0)) ∘𝑓 + (𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ -(𝐹𝐵)), -(𝐹𝐵), 0))))
9291fveq2d 6091 . . . 4 (𝜑 → (∫2𝐺) = (∫2‘((𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ (𝐹𝐵)), (𝐹𝐵), 0)) ∘𝑓 + (𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ -(𝐹𝐵)), -(𝐹𝐵), 0)))))
9356adantr 479 . . . . . 6 ((𝜑𝑥𝐴) → if((𝑥𝐴 ∧ 0 ≤ (𝐹𝐵)), (𝐹𝐵), 0) ∈ (0[,)+∞))
9445, 83syl5eq 2655 . . . . . . 7 𝑥𝐴 → if((𝑥𝐴 ∧ 0 ≤ (𝐹𝐵)), (𝐹𝐵), 0) = 0)
9518, 94syl 17 . . . . . 6 ((𝜑𝑥 ∈ (ℝ ∖ 𝐴)) → if((𝑥𝐴 ∧ 0 ≤ (𝐹𝐵)), (𝐹𝐵), 0) = 0)
96 ibar 523 . . . . . . . . 9 (𝑥𝐴 → (0 ≤ (𝐹𝐵) ↔ (𝑥𝐴 ∧ 0 ≤ (𝐹𝐵))))
9796ifbid 4057 . . . . . . . 8 (𝑥𝐴 → if(0 ≤ (𝐹𝐵), (𝐹𝐵), 0) = if((𝑥𝐴 ∧ 0 ≤ (𝐹𝐵)), (𝐹𝐵), 0))
9897mpteq2ia 4662 . . . . . . 7 (𝑥𝐴 ↦ if(0 ≤ (𝐹𝐵), (𝐹𝐵), 0)) = (𝑥𝐴 ↦ if((𝑥𝐴 ∧ 0 ≤ (𝐹𝐵)), (𝐹𝐵), 0))
993, 6mbfpos 23168 . . . . . . 7 (𝜑 → (𝑥𝐴 ↦ if(0 ≤ (𝐹𝐵), (𝐹𝐵), 0)) ∈ MblFn)
10098, 99syl5eqelr 2692 . . . . . 6 (𝜑 → (𝑥𝐴 ↦ if((𝑥𝐴 ∧ 0 ≤ (𝐹𝐵)), (𝐹𝐵), 0)) ∈ MblFn)
1019, 11, 93, 95, 100mbfss 23163 . . . . 5 (𝜑 → (𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ (𝐹𝐵)), (𝐹𝐵), 0)) ∈ MblFn)
102 eqid 2609 . . . . . 6 (𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ (𝐹𝐵)), (𝐹𝐵), 0)) = (𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ (𝐹𝐵)), (𝐹𝐵), 0))
10357, 102fmptd 6276 . . . . 5 (𝜑 → (𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ (𝐹𝐵)), (𝐹𝐵), 0)):ℝ⟶(0[,)+∞))
1045simp2d 1066 . . . . 5 (𝜑 → (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ (𝐹𝐵)), (𝐹𝐵), 0))) ∈ ℝ)
10567adantr 479 . . . . . 6 ((𝜑𝑥𝐴) → if((𝑥𝐴 ∧ 0 ≤ -(𝐹𝐵)), -(𝐹𝐵), 0) ∈ (0[,)+∞))
10658, 84syl5eq 2655 . . . . . . 7 𝑥𝐴 → if((𝑥𝐴 ∧ 0 ≤ -(𝐹𝐵)), -(𝐹𝐵), 0) = 0)
10718, 106syl 17 . . . . . 6 ((𝜑𝑥 ∈ (ℝ ∖ 𝐴)) → if((𝑥𝐴 ∧ 0 ≤ -(𝐹𝐵)), -(𝐹𝐵), 0) = 0)
108 ibar 523 . . . . . . . . 9 (𝑥𝐴 → (0 ≤ -(𝐹𝐵) ↔ (𝑥𝐴 ∧ 0 ≤ -(𝐹𝐵))))
109108ifbid 4057 . . . . . . . 8 (𝑥𝐴 → if(0 ≤ -(𝐹𝐵), -(𝐹𝐵), 0) = if((𝑥𝐴 ∧ 0 ≤ -(𝐹𝐵)), -(𝐹𝐵), 0))
110109mpteq2ia 4662 . . . . . . 7 (𝑥𝐴 ↦ if(0 ≤ -(𝐹𝐵), -(𝐹𝐵), 0)) = (𝑥𝐴 ↦ if((𝑥𝐴 ∧ 0 ≤ -(𝐹𝐵)), -(𝐹𝐵), 0))
1113, 6mbfneg 23167 . . . . . . . 8 (𝜑 → (𝑥𝐴 ↦ -(𝐹𝐵)) ∈ MblFn)
11259, 111mbfpos 23168 . . . . . . 7 (𝜑 → (𝑥𝐴 ↦ if(0 ≤ -(𝐹𝐵), -(𝐹𝐵), 0)) ∈ MblFn)
113110, 112syl5eqelr 2692 . . . . . 6 (𝜑 → (𝑥𝐴 ↦ if((𝑥𝐴 ∧ 0 ≤ -(𝐹𝐵)), -(𝐹𝐵), 0)) ∈ MblFn)
1149, 11, 105, 107, 113mbfss 23163 . . . . 5 (𝜑 → (𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ -(𝐹𝐵)), -(𝐹𝐵), 0)) ∈ MblFn)
115 eqid 2609 . . . . . 6 (𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ -(𝐹𝐵)), -(𝐹𝐵), 0)) = (𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ -(𝐹𝐵)), -(𝐹𝐵), 0))
11668, 115fmptd 6276 . . . . 5 (𝜑 → (𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ -(𝐹𝐵)), -(𝐹𝐵), 0)):ℝ⟶(0[,)+∞))
1175simp3d 1067 . . . . 5 (𝜑 → (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ -(𝐹𝐵)), -(𝐹𝐵), 0))) ∈ ℝ)
118101, 103, 104, 114, 116, 117itg2add 23276 . . . 4 (𝜑 → (∫2‘((𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ (𝐹𝐵)), (𝐹𝐵), 0)) ∘𝑓 + (𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ -(𝐹𝐵)), -(𝐹𝐵), 0)))) = ((∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ (𝐹𝐵)), (𝐹𝐵), 0))) + (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ -(𝐹𝐵)), -(𝐹𝐵), 0)))))
11992, 118eqtrd 2643 . . 3 (𝜑 → (∫2𝐺) = ((∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ (𝐹𝐵)), (𝐹𝐵), 0))) + (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ -(𝐹𝐵)), -(𝐹𝐵), 0)))))
120104, 117readdcld 9925 . . 3 (𝜑 → ((∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ (𝐹𝐵)), (𝐹𝐵), 0))) + (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ -(𝐹𝐵)), -(𝐹𝐵), 0)))) ∈ ℝ)
121119, 120eqeltrd 2687 . 2 (𝜑 → (∫2𝐺) ∈ ℝ)
12242, 121jca 552 1 (𝜑 → (𝐺 ∈ MblFn ∧ (∫2𝐺) ∈ ℝ))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 382  w3a 1030   = wceq 1474  wcel 1976  Vcvv 3172  cdif 3536  wss 3539  ifcif 4035   class class class wbr 4577  cmpt 4637  dom cdm 5027  ccom 5031  wf 5785  cfv 5789  (class class class)co 6526  𝑓 cof 6770  cc 9790  cr 9791  0cc0 9792   + caddc 9795  +∞cpnf 9927  cle 9931  -cneg 10118  [,)cico 12006  abscabs 13770  cnccncf 22434  volcvol 22983  MblFncmbf 23133  2citg2 23135  𝐿1cibl 23136
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1712  ax-4 1727  ax-5 1826  ax-6 1874  ax-7 1921  ax-8 1978  ax-9 1985  ax-10 2005  ax-11 2020  ax-12 2033  ax-13 2233  ax-ext 2589  ax-rep 4693  ax-sep 4703  ax-nul 4711  ax-pow 4763  ax-pr 4827  ax-un 6824  ax-inf2 8398  ax-cc 9117  ax-cnex 9848  ax-resscn 9849  ax-1cn 9850  ax-icn 9851  ax-addcl 9852  ax-addrcl 9853  ax-mulcl 9854  ax-mulrcl 9855  ax-mulcom 9856  ax-addass 9857  ax-mulass 9858  ax-distr 9859  ax-i2m1 9860  ax-1ne0 9861  ax-1rid 9862  ax-rnegex 9863  ax-rrecex 9864  ax-cnre 9865  ax-pre-lttri 9866  ax-pre-lttrn 9867  ax-pre-ltadd 9868  ax-pre-mulgt0 9869  ax-pre-sup 9870  ax-addf 9871  ax-mulf 9872
This theorem depends on definitions:  df-bi 195  df-or 383  df-an 384  df-3or 1031  df-3an 1032  df-tru 1477  df-fal 1480  df-ex 1695  df-nf 1700  df-sb 1867  df-eu 2461  df-mo 2462  df-clab 2596  df-cleq 2602  df-clel 2605  df-nfc 2739  df-ne 2781  df-nel 2782  df-ral 2900  df-rex 2901  df-reu 2902  df-rmo 2903  df-rab 2904  df-v 3174  df-sbc 3402  df-csb 3499  df-dif 3542  df-un 3544  df-in 3546  df-ss 3553  df-pss 3555  df-nul 3874  df-if 4036  df-pw 4109  df-sn 4125  df-pr 4127  df-tp 4129  df-op 4131  df-uni 4367  df-int 4405  df-iun 4451  df-iin 4452  df-disj 4548  df-br 4578  df-opab 4638  df-mpt 4639  df-tr 4675  df-eprel 4938  df-id 4942  df-po 4948  df-so 4949  df-fr 4986  df-se 4987  df-we 4988  df-xp 5033  df-rel 5034  df-cnv 5035  df-co 5036  df-dm 5037  df-rn 5038  df-res 5039  df-ima 5040  df-pred 5582  df-ord 5628  df-on 5629  df-lim 5630  df-suc 5631  df-iota 5753  df-fun 5791  df-fn 5792  df-f 5793  df-f1 5794  df-fo 5795  df-f1o 5796  df-fv 5797  df-isom 5798  df-riota 6488  df-ov 6529  df-oprab 6530  df-mpt2 6531  df-of 6772  df-ofr 6773  df-om 6935  df-1st 7036  df-2nd 7037  df-supp 7160  df-wrecs 7271  df-recs 7332  df-rdg 7370  df-1o 7424  df-2o 7425  df-oadd 7428  df-omul 7429  df-er 7606  df-map 7723  df-pm 7724  df-ixp 7772  df-en 7819  df-dom 7820  df-sdom 7821  df-fin 7822  df-fsupp 8136  df-fi 8177  df-sup 8208  df-inf 8209  df-oi 8275  df-card 8625  df-acn 8628  df-cda 8850  df-pnf 9932  df-mnf 9933  df-xr 9934  df-ltxr 9935  df-le 9936  df-sub 10119  df-neg 10120  df-div 10536  df-nn 10870  df-2 10928  df-3 10929  df-4 10930  df-5 10931  df-6 10932  df-7 10933  df-8 10934  df-9 10935  df-n0 11142  df-z 11213  df-dec 11328  df-uz 11522  df-q 11623  df-rp 11667  df-xneg 11780  df-xadd 11781  df-xmul 11782  df-ioo 12008  df-ioc 12009  df-ico 12010  df-icc 12011  df-fz 12155  df-fzo 12292  df-fl 12412  df-seq 12621  df-exp 12680  df-hash 12937  df-cj 13635  df-re 13636  df-im 13637  df-sqrt 13771  df-abs 13772  df-clim 14015  df-rlim 14016  df-sum 14213  df-struct 15645  df-ndx 15646  df-slot 15647  df-base 15648  df-sets 15649  df-ress 15650  df-plusg 15729  df-mulr 15730  df-starv 15731  df-sca 15732  df-vsca 15733  df-ip 15734  df-tset 15735  df-ple 15736  df-ds 15739  df-unif 15740  df-hom 15741  df-cco 15742  df-rest 15854  df-topn 15855  df-0g 15873  df-gsum 15874  df-topgen 15875  df-pt 15876  df-prds 15879  df-xrs 15933  df-qtop 15938  df-imas 15939  df-xps 15941  df-mre 16017  df-mrc 16018  df-acs 16020  df-mgm 17013  df-sgrp 17055  df-mnd 17066  df-submnd 17107  df-mulg 17312  df-cntz 17521  df-cmn 17966  df-psmet 19507  df-xmet 19508  df-met 19509  df-bl 19510  df-mopn 19511  df-cnfld 19516  df-top 20468  df-bases 20469  df-topon 20470  df-topsp 20471  df-cn 20788  df-cnp 20789  df-cmp 20947  df-tx 21122  df-hmeo 21315  df-xms 21882  df-ms 21883  df-tms 21884  df-cncf 22436  df-ovol 22984  df-vol 22985  df-mbf 23138  df-itg1 23139  df-itg2 23140  df-ibl 23141  df-0p 23187
This theorem is referenced by:  iblabs  23345
  Copyright terms: Public domain W3C validator