MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ibladd Structured version   Visualization version   GIF version

Theorem ibladd 24423
Description: Add two integrals over the same domain. (Contributed by Mario Carneiro, 17-Aug-2014.)
Hypotheses
Ref Expression
itgadd.1 ((𝜑𝑥𝐴) → 𝐵𝑉)
itgadd.2 (𝜑 → (𝑥𝐴𝐵) ∈ 𝐿1)
itgadd.3 ((𝜑𝑥𝐴) → 𝐶𝑉)
itgadd.4 (𝜑 → (𝑥𝐴𝐶) ∈ 𝐿1)
Assertion
Ref Expression
ibladd (𝜑 → (𝑥𝐴 ↦ (𝐵 + 𝐶)) ∈ 𝐿1)
Distinct variable groups:   𝑥,𝐴   𝑥,𝑉   𝜑,𝑥
Allowed substitution hints:   𝐵(𝑥)   𝐶(𝑥)

Proof of Theorem ibladd
StepHypRef Expression
1 itgadd.2 . . . . . . 7 (𝜑 → (𝑥𝐴𝐵) ∈ 𝐿1)
2 eqid 2823 . . . . . . . 8 (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ (ℜ‘𝐵)), (ℜ‘𝐵), 0))) = (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ (ℜ‘𝐵)), (ℜ‘𝐵), 0)))
3 eqid 2823 . . . . . . . 8 (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ -(ℜ‘𝐵)), -(ℜ‘𝐵), 0))) = (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ -(ℜ‘𝐵)), -(ℜ‘𝐵), 0)))
4 eqid 2823 . . . . . . . 8 (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ (ℑ‘𝐵)), (ℑ‘𝐵), 0))) = (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ (ℑ‘𝐵)), (ℑ‘𝐵), 0)))
5 eqid 2823 . . . . . . . 8 (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ -(ℑ‘𝐵)), -(ℑ‘𝐵), 0))) = (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ -(ℑ‘𝐵)), -(ℑ‘𝐵), 0)))
6 itgadd.1 . . . . . . . 8 ((𝜑𝑥𝐴) → 𝐵𝑉)
72, 3, 4, 5, 6iblcnlem 24391 . . . . . . 7 (𝜑 → ((𝑥𝐴𝐵) ∈ 𝐿1 ↔ ((𝑥𝐴𝐵) ∈ MblFn ∧ ((∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ (ℜ‘𝐵)), (ℜ‘𝐵), 0))) ∈ ℝ ∧ (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ -(ℜ‘𝐵)), -(ℜ‘𝐵), 0))) ∈ ℝ) ∧ ((∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ (ℑ‘𝐵)), (ℑ‘𝐵), 0))) ∈ ℝ ∧ (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ -(ℑ‘𝐵)), -(ℑ‘𝐵), 0))) ∈ ℝ))))
81, 7mpbid 234 . . . . . 6 (𝜑 → ((𝑥𝐴𝐵) ∈ MblFn ∧ ((∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ (ℜ‘𝐵)), (ℜ‘𝐵), 0))) ∈ ℝ ∧ (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ -(ℜ‘𝐵)), -(ℜ‘𝐵), 0))) ∈ ℝ) ∧ ((∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ (ℑ‘𝐵)), (ℑ‘𝐵), 0))) ∈ ℝ ∧ (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ -(ℑ‘𝐵)), -(ℑ‘𝐵), 0))) ∈ ℝ)))
98simp1d 1138 . . . . 5 (𝜑 → (𝑥𝐴𝐵) ∈ MblFn)
109, 6mbfdm2 24240 . . . 4 (𝜑𝐴 ∈ dom vol)
11 itgadd.3 . . . 4 ((𝜑𝑥𝐴) → 𝐶𝑉)
12 eqidd 2824 . . . 4 (𝜑 → (𝑥𝐴𝐵) = (𝑥𝐴𝐵))
13 eqidd 2824 . . . 4 (𝜑 → (𝑥𝐴𝐶) = (𝑥𝐴𝐶))
1410, 6, 11, 12, 13offval2 7428 . . 3 (𝜑 → ((𝑥𝐴𝐵) ∘f + (𝑥𝐴𝐶)) = (𝑥𝐴 ↦ (𝐵 + 𝐶)))
15 itgadd.4 . . . . . 6 (𝜑 → (𝑥𝐴𝐶) ∈ 𝐿1)
16 eqid 2823 . . . . . . 7 (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ (ℜ‘𝐶)), (ℜ‘𝐶), 0))) = (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ (ℜ‘𝐶)), (ℜ‘𝐶), 0)))
17 eqid 2823 . . . . . . 7 (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ -(ℜ‘𝐶)), -(ℜ‘𝐶), 0))) = (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ -(ℜ‘𝐶)), -(ℜ‘𝐶), 0)))
18 eqid 2823 . . . . . . 7 (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ (ℑ‘𝐶)), (ℑ‘𝐶), 0))) = (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ (ℑ‘𝐶)), (ℑ‘𝐶), 0)))
19 eqid 2823 . . . . . . 7 (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ -(ℑ‘𝐶)), -(ℑ‘𝐶), 0))) = (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ -(ℑ‘𝐶)), -(ℑ‘𝐶), 0)))
2016, 17, 18, 19, 11iblcnlem 24391 . . . . . 6 (𝜑 → ((𝑥𝐴𝐶) ∈ 𝐿1 ↔ ((𝑥𝐴𝐶) ∈ MblFn ∧ ((∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ (ℜ‘𝐶)), (ℜ‘𝐶), 0))) ∈ ℝ ∧ (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ -(ℜ‘𝐶)), -(ℜ‘𝐶), 0))) ∈ ℝ) ∧ ((∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ (ℑ‘𝐶)), (ℑ‘𝐶), 0))) ∈ ℝ ∧ (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ -(ℑ‘𝐶)), -(ℑ‘𝐶), 0))) ∈ ℝ))))
2115, 20mpbid 234 . . . . 5 (𝜑 → ((𝑥𝐴𝐶) ∈ MblFn ∧ ((∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ (ℜ‘𝐶)), (ℜ‘𝐶), 0))) ∈ ℝ ∧ (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ -(ℜ‘𝐶)), -(ℜ‘𝐶), 0))) ∈ ℝ) ∧ ((∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ (ℑ‘𝐶)), (ℑ‘𝐶), 0))) ∈ ℝ ∧ (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ -(ℑ‘𝐶)), -(ℑ‘𝐶), 0))) ∈ ℝ)))
2221simp1d 1138 . . . 4 (𝜑 → (𝑥𝐴𝐶) ∈ MblFn)
239, 22mbfadd 24264 . . 3 (𝜑 → ((𝑥𝐴𝐵) ∘f + (𝑥𝐴𝐶)) ∈ MblFn)
2414, 23eqeltrrd 2916 . 2 (𝜑 → (𝑥𝐴 ↦ (𝐵 + 𝐶)) ∈ MblFn)
259, 6mbfmptcl 24239 . . . . 5 ((𝜑𝑥𝐴) → 𝐵 ∈ ℂ)
2625recld 14555 . . . 4 ((𝜑𝑥𝐴) → (ℜ‘𝐵) ∈ ℝ)
2722, 11mbfmptcl 24239 . . . . 5 ((𝜑𝑥𝐴) → 𝐶 ∈ ℂ)
2827recld 14555 . . . 4 ((𝜑𝑥𝐴) → (ℜ‘𝐶) ∈ ℝ)
2925, 27readdd 14575 . . . 4 ((𝜑𝑥𝐴) → (ℜ‘(𝐵 + 𝐶)) = ((ℜ‘𝐵) + (ℜ‘𝐶)))
3025ismbfcn2 24241 . . . . . 6 (𝜑 → ((𝑥𝐴𝐵) ∈ MblFn ↔ ((𝑥𝐴 ↦ (ℜ‘𝐵)) ∈ MblFn ∧ (𝑥𝐴 ↦ (ℑ‘𝐵)) ∈ MblFn)))
319, 30mpbid 234 . . . . 5 (𝜑 → ((𝑥𝐴 ↦ (ℜ‘𝐵)) ∈ MblFn ∧ (𝑥𝐴 ↦ (ℑ‘𝐵)) ∈ MblFn))
3231simpld 497 . . . 4 (𝜑 → (𝑥𝐴 ↦ (ℜ‘𝐵)) ∈ MblFn)
3327ismbfcn2 24241 . . . . . 6 (𝜑 → ((𝑥𝐴𝐶) ∈ MblFn ↔ ((𝑥𝐴 ↦ (ℜ‘𝐶)) ∈ MblFn ∧ (𝑥𝐴 ↦ (ℑ‘𝐶)) ∈ MblFn)))
3422, 33mpbid 234 . . . . 5 (𝜑 → ((𝑥𝐴 ↦ (ℜ‘𝐶)) ∈ MblFn ∧ (𝑥𝐴 ↦ (ℑ‘𝐶)) ∈ MblFn))
3534simpld 497 . . . 4 (𝜑 → (𝑥𝐴 ↦ (ℜ‘𝐶)) ∈ MblFn)
368simp2d 1139 . . . . 5 (𝜑 → ((∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ (ℜ‘𝐵)), (ℜ‘𝐵), 0))) ∈ ℝ ∧ (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ -(ℜ‘𝐵)), -(ℜ‘𝐵), 0))) ∈ ℝ))
3736simpld 497 . . . 4 (𝜑 → (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ (ℜ‘𝐵)), (ℜ‘𝐵), 0))) ∈ ℝ)
3821simp2d 1139 . . . . 5 (𝜑 → ((∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ (ℜ‘𝐶)), (ℜ‘𝐶), 0))) ∈ ℝ ∧ (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ -(ℜ‘𝐶)), -(ℜ‘𝐶), 0))) ∈ ℝ))
3938simpld 497 . . . 4 (𝜑 → (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ (ℜ‘𝐶)), (ℜ‘𝐶), 0))) ∈ ℝ)
4026, 28, 29, 32, 35, 37, 39ibladdlem 24422 . . 3 (𝜑 → (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ (ℜ‘(𝐵 + 𝐶))), (ℜ‘(𝐵 + 𝐶)), 0))) ∈ ℝ)
4126renegcld 11069 . . . 4 ((𝜑𝑥𝐴) → -(ℜ‘𝐵) ∈ ℝ)
4228renegcld 11069 . . . 4 ((𝜑𝑥𝐴) → -(ℜ‘𝐶) ∈ ℝ)
4329negeqd 10882 . . . . 5 ((𝜑𝑥𝐴) → -(ℜ‘(𝐵 + 𝐶)) = -((ℜ‘𝐵) + (ℜ‘𝐶)))
4426recnd 10671 . . . . . 6 ((𝜑𝑥𝐴) → (ℜ‘𝐵) ∈ ℂ)
4528recnd 10671 . . . . . 6 ((𝜑𝑥𝐴) → (ℜ‘𝐶) ∈ ℂ)
4644, 45negdid 11012 . . . . 5 ((𝜑𝑥𝐴) → -((ℜ‘𝐵) + (ℜ‘𝐶)) = (-(ℜ‘𝐵) + -(ℜ‘𝐶)))
4743, 46eqtrd 2858 . . . 4 ((𝜑𝑥𝐴) → -(ℜ‘(𝐵 + 𝐶)) = (-(ℜ‘𝐵) + -(ℜ‘𝐶)))
4826, 32mbfneg 24253 . . . 4 (𝜑 → (𝑥𝐴 ↦ -(ℜ‘𝐵)) ∈ MblFn)
4928, 35mbfneg 24253 . . . 4 (𝜑 → (𝑥𝐴 ↦ -(ℜ‘𝐶)) ∈ MblFn)
5036simprd 498 . . . 4 (𝜑 → (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ -(ℜ‘𝐵)), -(ℜ‘𝐵), 0))) ∈ ℝ)
5138simprd 498 . . . 4 (𝜑 → (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ -(ℜ‘𝐶)), -(ℜ‘𝐶), 0))) ∈ ℝ)
5241, 42, 47, 48, 49, 50, 51ibladdlem 24422 . . 3 (𝜑 → (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ -(ℜ‘(𝐵 + 𝐶))), -(ℜ‘(𝐵 + 𝐶)), 0))) ∈ ℝ)
5340, 52jca 514 . 2 (𝜑 → ((∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ (ℜ‘(𝐵 + 𝐶))), (ℜ‘(𝐵 + 𝐶)), 0))) ∈ ℝ ∧ (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ -(ℜ‘(𝐵 + 𝐶))), -(ℜ‘(𝐵 + 𝐶)), 0))) ∈ ℝ))
5425imcld 14556 . . . 4 ((𝜑𝑥𝐴) → (ℑ‘𝐵) ∈ ℝ)
5527imcld 14556 . . . 4 ((𝜑𝑥𝐴) → (ℑ‘𝐶) ∈ ℝ)
5625, 27imaddd 14576 . . . 4 ((𝜑𝑥𝐴) → (ℑ‘(𝐵 + 𝐶)) = ((ℑ‘𝐵) + (ℑ‘𝐶)))
5731simprd 498 . . . 4 (𝜑 → (𝑥𝐴 ↦ (ℑ‘𝐵)) ∈ MblFn)
5834simprd 498 . . . 4 (𝜑 → (𝑥𝐴 ↦ (ℑ‘𝐶)) ∈ MblFn)
598simp3d 1140 . . . . 5 (𝜑 → ((∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ (ℑ‘𝐵)), (ℑ‘𝐵), 0))) ∈ ℝ ∧ (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ -(ℑ‘𝐵)), -(ℑ‘𝐵), 0))) ∈ ℝ))
6059simpld 497 . . . 4 (𝜑 → (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ (ℑ‘𝐵)), (ℑ‘𝐵), 0))) ∈ ℝ)
6121simp3d 1140 . . . . 5 (𝜑 → ((∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ (ℑ‘𝐶)), (ℑ‘𝐶), 0))) ∈ ℝ ∧ (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ -(ℑ‘𝐶)), -(ℑ‘𝐶), 0))) ∈ ℝ))
6261simpld 497 . . . 4 (𝜑 → (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ (ℑ‘𝐶)), (ℑ‘𝐶), 0))) ∈ ℝ)
6354, 55, 56, 57, 58, 60, 62ibladdlem 24422 . . 3 (𝜑 → (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ (ℑ‘(𝐵 + 𝐶))), (ℑ‘(𝐵 + 𝐶)), 0))) ∈ ℝ)
6454renegcld 11069 . . . 4 ((𝜑𝑥𝐴) → -(ℑ‘𝐵) ∈ ℝ)
6555renegcld 11069 . . . 4 ((𝜑𝑥𝐴) → -(ℑ‘𝐶) ∈ ℝ)
6656negeqd 10882 . . . . 5 ((𝜑𝑥𝐴) → -(ℑ‘(𝐵 + 𝐶)) = -((ℑ‘𝐵) + (ℑ‘𝐶)))
6754recnd 10671 . . . . . 6 ((𝜑𝑥𝐴) → (ℑ‘𝐵) ∈ ℂ)
6855recnd 10671 . . . . . 6 ((𝜑𝑥𝐴) → (ℑ‘𝐶) ∈ ℂ)
6967, 68negdid 11012 . . . . 5 ((𝜑𝑥𝐴) → -((ℑ‘𝐵) + (ℑ‘𝐶)) = (-(ℑ‘𝐵) + -(ℑ‘𝐶)))
7066, 69eqtrd 2858 . . . 4 ((𝜑𝑥𝐴) → -(ℑ‘(𝐵 + 𝐶)) = (-(ℑ‘𝐵) + -(ℑ‘𝐶)))
7154, 57mbfneg 24253 . . . 4 (𝜑 → (𝑥𝐴 ↦ -(ℑ‘𝐵)) ∈ MblFn)
7255, 58mbfneg 24253 . . . 4 (𝜑 → (𝑥𝐴 ↦ -(ℑ‘𝐶)) ∈ MblFn)
7359simprd 498 . . . 4 (𝜑 → (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ -(ℑ‘𝐵)), -(ℑ‘𝐵), 0))) ∈ ℝ)
7461simprd 498 . . . 4 (𝜑 → (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ -(ℑ‘𝐶)), -(ℑ‘𝐶), 0))) ∈ ℝ)
7564, 65, 70, 71, 72, 73, 74ibladdlem 24422 . . 3 (𝜑 → (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ -(ℑ‘(𝐵 + 𝐶))), -(ℑ‘(𝐵 + 𝐶)), 0))) ∈ ℝ)
7663, 75jca 514 . 2 (𝜑 → ((∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ (ℑ‘(𝐵 + 𝐶))), (ℑ‘(𝐵 + 𝐶)), 0))) ∈ ℝ ∧ (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ -(ℑ‘(𝐵 + 𝐶))), -(ℑ‘(𝐵 + 𝐶)), 0))) ∈ ℝ))
77 eqid 2823 . . 3 (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ (ℜ‘(𝐵 + 𝐶))), (ℜ‘(𝐵 + 𝐶)), 0))) = (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ (ℜ‘(𝐵 + 𝐶))), (ℜ‘(𝐵 + 𝐶)), 0)))
78 eqid 2823 . . 3 (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ -(ℜ‘(𝐵 + 𝐶))), -(ℜ‘(𝐵 + 𝐶)), 0))) = (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ -(ℜ‘(𝐵 + 𝐶))), -(ℜ‘(𝐵 + 𝐶)), 0)))
79 eqid 2823 . . 3 (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ (ℑ‘(𝐵 + 𝐶))), (ℑ‘(𝐵 + 𝐶)), 0))) = (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ (ℑ‘(𝐵 + 𝐶))), (ℑ‘(𝐵 + 𝐶)), 0)))
80 eqid 2823 . . 3 (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ -(ℑ‘(𝐵 + 𝐶))), -(ℑ‘(𝐵 + 𝐶)), 0))) = (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ -(ℑ‘(𝐵 + 𝐶))), -(ℑ‘(𝐵 + 𝐶)), 0)))
81 ovexd 7193 . . 3 ((𝜑𝑥𝐴) → (𝐵 + 𝐶) ∈ V)
8277, 78, 79, 80, 81iblcnlem 24391 . 2 (𝜑 → ((𝑥𝐴 ↦ (𝐵 + 𝐶)) ∈ 𝐿1 ↔ ((𝑥𝐴 ↦ (𝐵 + 𝐶)) ∈ MblFn ∧ ((∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ (ℜ‘(𝐵 + 𝐶))), (ℜ‘(𝐵 + 𝐶)), 0))) ∈ ℝ ∧ (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ -(ℜ‘(𝐵 + 𝐶))), -(ℜ‘(𝐵 + 𝐶)), 0))) ∈ ℝ) ∧ ((∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ (ℑ‘(𝐵 + 𝐶))), (ℑ‘(𝐵 + 𝐶)), 0))) ∈ ℝ ∧ (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ -(ℑ‘(𝐵 + 𝐶))), -(ℑ‘(𝐵 + 𝐶)), 0))) ∈ ℝ))))
8324, 53, 76, 82mpbir3and 1338 1 (𝜑 → (𝑥𝐴 ↦ (𝐵 + 𝐶)) ∈ 𝐿1)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 398  w3a 1083  wcel 2114  Vcvv 3496  ifcif 4469   class class class wbr 5068  cmpt 5148  dom cdm 5557  cfv 6357  (class class class)co 7158  f cof 7409  cr 10538  0cc0 10539   + caddc 10542  cle 10678  -cneg 10873  cre 14458  cim 14459  volcvol 24066  MblFncmbf 24217  2citg2 24219  𝐿1cibl 24220
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2795  ax-rep 5192  ax-sep 5205  ax-nul 5212  ax-pow 5268  ax-pr 5332  ax-un 7463  ax-inf2 9106  ax-cc 9859  ax-cnex 10595  ax-resscn 10596  ax-1cn 10597  ax-icn 10598  ax-addcl 10599  ax-addrcl 10600  ax-mulcl 10601  ax-mulrcl 10602  ax-mulcom 10603  ax-addass 10604  ax-mulass 10605  ax-distr 10606  ax-i2m1 10607  ax-1ne0 10608  ax-1rid 10609  ax-rnegex 10610  ax-rrecex 10611  ax-cnre 10612  ax-pre-lttri 10613  ax-pre-lttrn 10614  ax-pre-ltadd 10615  ax-pre-mulgt0 10616  ax-pre-sup 10617  ax-addf 10618
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-fal 1550  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2802  df-cleq 2816  df-clel 2895  df-nfc 2965  df-ne 3019  df-nel 3126  df-ral 3145  df-rex 3146  df-reu 3147  df-rmo 3148  df-rab 3149  df-v 3498  df-sbc 3775  df-csb 3886  df-dif 3941  df-un 3943  df-in 3945  df-ss 3954  df-pss 3956  df-nul 4294  df-if 4470  df-pw 4543  df-sn 4570  df-pr 4572  df-tp 4574  df-op 4576  df-uni 4841  df-int 4879  df-iun 4923  df-disj 5034  df-br 5069  df-opab 5131  df-mpt 5149  df-tr 5175  df-id 5462  df-eprel 5467  df-po 5476  df-so 5477  df-fr 5516  df-se 5517  df-we 5518  df-xp 5563  df-rel 5564  df-cnv 5565  df-co 5566  df-dm 5567  df-rn 5568  df-res 5569  df-ima 5570  df-pred 6150  df-ord 6196  df-on 6197  df-lim 6198  df-suc 6199  df-iota 6316  df-fun 6359  df-fn 6360  df-f 6361  df-f1 6362  df-fo 6363  df-f1o 6364  df-fv 6365  df-isom 6366  df-riota 7116  df-ov 7161  df-oprab 7162  df-mpo 7163  df-of 7411  df-ofr 7412  df-om 7583  df-1st 7691  df-2nd 7692  df-wrecs 7949  df-recs 8010  df-rdg 8048  df-1o 8104  df-2o 8105  df-oadd 8108  df-omul 8109  df-er 8291  df-map 8410  df-pm 8411  df-en 8512  df-dom 8513  df-sdom 8514  df-fin 8515  df-fi 8877  df-sup 8908  df-inf 8909  df-oi 8976  df-dju 9332  df-card 9370  df-acn 9373  df-pnf 10679  df-mnf 10680  df-xr 10681  df-ltxr 10682  df-le 10683  df-sub 10874  df-neg 10875  df-div 11300  df-nn 11641  df-2 11703  df-3 11704  df-n0 11901  df-z 11985  df-uz 12247  df-q 12352  df-rp 12393  df-xneg 12510  df-xadd 12511  df-xmul 12512  df-ioo 12745  df-ioc 12746  df-ico 12747  df-icc 12748  df-fz 12896  df-fzo 13037  df-fl 13165  df-seq 13373  df-exp 13433  df-hash 13694  df-cj 14460  df-re 14461  df-im 14462  df-sqrt 14596  df-abs 14597  df-clim 14847  df-rlim 14848  df-sum 15045  df-rest 16698  df-topgen 16719  df-psmet 20539  df-xmet 20540  df-met 20541  df-bl 20542  df-mopn 20543  df-top 21504  df-topon 21521  df-bases 21556  df-cmp 21997  df-ovol 24067  df-vol 24068  df-mbf 24222  df-itg1 24223  df-itg2 24224  df-ibl 24225  df-0p 24273
This theorem is referenced by:  iblsub  24424  itgaddlem1  24425  itgaddlem2  24426  itgadd  24427  itgfsum  24429  itgparts  24646
  Copyright terms: Public domain W3C validator