MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  iblcnlem Structured version   Visualization version   GIF version

Theorem iblcnlem 23495
Description: Expand out the forall in isibl2 23473. (Contributed by Mario Carneiro, 6-Aug-2014.)
Hypotheses
Ref Expression
itgcnlem.r 𝑅 = (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ (ℜ‘𝐵)), (ℜ‘𝐵), 0)))
itgcnlem.s 𝑆 = (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ -(ℜ‘𝐵)), -(ℜ‘𝐵), 0)))
itgcnlem.t 𝑇 = (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ (ℑ‘𝐵)), (ℑ‘𝐵), 0)))
itgcnlem.u 𝑈 = (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ -(ℑ‘𝐵)), -(ℑ‘𝐵), 0)))
itgcnlem.v ((𝜑𝑥𝐴) → 𝐵𝑉)
Assertion
Ref Expression
iblcnlem (𝜑 → ((𝑥𝐴𝐵) ∈ 𝐿1 ↔ ((𝑥𝐴𝐵) ∈ MblFn ∧ (𝑅 ∈ ℝ ∧ 𝑆 ∈ ℝ) ∧ (𝑇 ∈ ℝ ∧ 𝑈 ∈ ℝ))))
Distinct variable groups:   𝑥,𝐴   𝜑,𝑥   𝑥,𝑉
Allowed substitution hints:   𝐵(𝑥)   𝑅(𝑥)   𝑆(𝑥)   𝑇(𝑥)   𝑈(𝑥)

Proof of Theorem iblcnlem
StepHypRef Expression
1 iblmbf 23474 . . 3 ((𝑥𝐴𝐵) ∈ 𝐿1 → (𝑥𝐴𝐵) ∈ MblFn)
21a1i 11 . 2 (𝜑 → ((𝑥𝐴𝐵) ∈ 𝐿1 → (𝑥𝐴𝐵) ∈ MblFn))
3 simp1 1059 . . 3 (((𝑥𝐴𝐵) ∈ MblFn ∧ (𝑅 ∈ ℝ ∧ 𝑆 ∈ ℝ) ∧ (𝑇 ∈ ℝ ∧ 𝑈 ∈ ℝ)) → (𝑥𝐴𝐵) ∈ MblFn)
43a1i 11 . 2 (𝜑 → (((𝑥𝐴𝐵) ∈ MblFn ∧ (𝑅 ∈ ℝ ∧ 𝑆 ∈ ℝ) ∧ (𝑇 ∈ ℝ ∧ 𝑈 ∈ ℝ)) → (𝑥𝐴𝐵) ∈ MblFn))
5 eqid 2621 . . . . . 6 (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ (ℜ‘if(𝐵 ∈ ℂ, 𝐵, 0))), (ℜ‘if(𝐵 ∈ ℂ, 𝐵, 0)), 0))) = (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ (ℜ‘if(𝐵 ∈ ℂ, 𝐵, 0))), (ℜ‘if(𝐵 ∈ ℂ, 𝐵, 0)), 0)))
6 eqid 2621 . . . . . 6 (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ -(ℜ‘if(𝐵 ∈ ℂ, 𝐵, 0))), -(ℜ‘if(𝐵 ∈ ℂ, 𝐵, 0)), 0))) = (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ -(ℜ‘if(𝐵 ∈ ℂ, 𝐵, 0))), -(ℜ‘if(𝐵 ∈ ℂ, 𝐵, 0)), 0)))
7 eqid 2621 . . . . . 6 (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ (ℑ‘if(𝐵 ∈ ℂ, 𝐵, 0))), (ℑ‘if(𝐵 ∈ ℂ, 𝐵, 0)), 0))) = (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ (ℑ‘if(𝐵 ∈ ℂ, 𝐵, 0))), (ℑ‘if(𝐵 ∈ ℂ, 𝐵, 0)), 0)))
8 eqid 2621 . . . . . 6 (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ -(ℑ‘if(𝐵 ∈ ℂ, 𝐵, 0))), -(ℑ‘if(𝐵 ∈ ℂ, 𝐵, 0)), 0))) = (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ -(ℑ‘if(𝐵 ∈ ℂ, 𝐵, 0))), -(ℑ‘if(𝐵 ∈ ℂ, 𝐵, 0)), 0)))
9 0cn 9992 . . . . . . . 8 0 ∈ ℂ
109elimel 4128 . . . . . . 7 if(𝐵 ∈ ℂ, 𝐵, 0) ∈ ℂ
1110a1i 11 . . . . . 6 ((𝜑𝑥𝐴) → if(𝐵 ∈ ℂ, 𝐵, 0) ∈ ℂ)
125, 6, 7, 8, 11iblcnlem1 23494 . . . . 5 (𝜑 → ((𝑥𝐴 ↦ if(𝐵 ∈ ℂ, 𝐵, 0)) ∈ 𝐿1 ↔ ((𝑥𝐴 ↦ if(𝐵 ∈ ℂ, 𝐵, 0)) ∈ MblFn ∧ ((∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ (ℜ‘if(𝐵 ∈ ℂ, 𝐵, 0))), (ℜ‘if(𝐵 ∈ ℂ, 𝐵, 0)), 0))) ∈ ℝ ∧ (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ -(ℜ‘if(𝐵 ∈ ℂ, 𝐵, 0))), -(ℜ‘if(𝐵 ∈ ℂ, 𝐵, 0)), 0))) ∈ ℝ) ∧ ((∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ (ℑ‘if(𝐵 ∈ ℂ, 𝐵, 0))), (ℑ‘if(𝐵 ∈ ℂ, 𝐵, 0)), 0))) ∈ ℝ ∧ (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ -(ℑ‘if(𝐵 ∈ ℂ, 𝐵, 0))), -(ℑ‘if(𝐵 ∈ ℂ, 𝐵, 0)), 0))) ∈ ℝ))))
1312adantr 481 . . . 4 ((𝜑 ∧ (𝑥𝐴𝐵) ∈ MblFn) → ((𝑥𝐴 ↦ if(𝐵 ∈ ℂ, 𝐵, 0)) ∈ 𝐿1 ↔ ((𝑥𝐴 ↦ if(𝐵 ∈ ℂ, 𝐵, 0)) ∈ MblFn ∧ ((∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ (ℜ‘if(𝐵 ∈ ℂ, 𝐵, 0))), (ℜ‘if(𝐵 ∈ ℂ, 𝐵, 0)), 0))) ∈ ℝ ∧ (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ -(ℜ‘if(𝐵 ∈ ℂ, 𝐵, 0))), -(ℜ‘if(𝐵 ∈ ℂ, 𝐵, 0)), 0))) ∈ ℝ) ∧ ((∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ (ℑ‘if(𝐵 ∈ ℂ, 𝐵, 0))), (ℑ‘if(𝐵 ∈ ℂ, 𝐵, 0)), 0))) ∈ ℝ ∧ (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ -(ℑ‘if(𝐵 ∈ ℂ, 𝐵, 0))), -(ℑ‘if(𝐵 ∈ ℂ, 𝐵, 0)), 0))) ∈ ℝ))))
14 eqid 2621 . . . . . 6 𝐴 = 𝐴
15 mbff 23334 . . . . . . . . 9 ((𝑥𝐴𝐵) ∈ MblFn → (𝑥𝐴𝐵):dom (𝑥𝐴𝐵)⟶ℂ)
16 eqid 2621 . . . . . . . . . . . 12 (𝑥𝐴𝐵) = (𝑥𝐴𝐵)
17 itgcnlem.v . . . . . . . . . . . 12 ((𝜑𝑥𝐴) → 𝐵𝑉)
1816, 17dmmptd 5991 . . . . . . . . . . 11 (𝜑 → dom (𝑥𝐴𝐵) = 𝐴)
1918feq2d 5998 . . . . . . . . . 10 (𝜑 → ((𝑥𝐴𝐵):dom (𝑥𝐴𝐵)⟶ℂ ↔ (𝑥𝐴𝐵):𝐴⟶ℂ))
2019biimpa 501 . . . . . . . . 9 ((𝜑 ∧ (𝑥𝐴𝐵):dom (𝑥𝐴𝐵)⟶ℂ) → (𝑥𝐴𝐵):𝐴⟶ℂ)
2115, 20sylan2 491 . . . . . . . 8 ((𝜑 ∧ (𝑥𝐴𝐵) ∈ MblFn) → (𝑥𝐴𝐵):𝐴⟶ℂ)
2216fmpt 6347 . . . . . . . 8 (∀𝑥𝐴 𝐵 ∈ ℂ ↔ (𝑥𝐴𝐵):𝐴⟶ℂ)
2321, 22sylibr 224 . . . . . . 7 ((𝜑 ∧ (𝑥𝐴𝐵) ∈ MblFn) → ∀𝑥𝐴 𝐵 ∈ ℂ)
24 iftrue 4070 . . . . . . . 8 (𝐵 ∈ ℂ → if(𝐵 ∈ ℂ, 𝐵, 0) = 𝐵)
2524ralimi 2948 . . . . . . 7 (∀𝑥𝐴 𝐵 ∈ ℂ → ∀𝑥𝐴 if(𝐵 ∈ ℂ, 𝐵, 0) = 𝐵)
2623, 25syl 17 . . . . . 6 ((𝜑 ∧ (𝑥𝐴𝐵) ∈ MblFn) → ∀𝑥𝐴 if(𝐵 ∈ ℂ, 𝐵, 0) = 𝐵)
27 mpteq12 4706 . . . . . 6 ((𝐴 = 𝐴 ∧ ∀𝑥𝐴 if(𝐵 ∈ ℂ, 𝐵, 0) = 𝐵) → (𝑥𝐴 ↦ if(𝐵 ∈ ℂ, 𝐵, 0)) = (𝑥𝐴𝐵))
2814, 26, 27sylancr 694 . . . . 5 ((𝜑 ∧ (𝑥𝐴𝐵) ∈ MblFn) → (𝑥𝐴 ↦ if(𝐵 ∈ ℂ, 𝐵, 0)) = (𝑥𝐴𝐵))
2928eleq1d 2683 . . . 4 ((𝜑 ∧ (𝑥𝐴𝐵) ∈ MblFn) → ((𝑥𝐴 ↦ if(𝐵 ∈ ℂ, 𝐵, 0)) ∈ 𝐿1 ↔ (𝑥𝐴𝐵) ∈ 𝐿1))
3028eleq1d 2683 . . . . 5 ((𝜑 ∧ (𝑥𝐴𝐵) ∈ MblFn) → ((𝑥𝐴 ↦ if(𝐵 ∈ ℂ, 𝐵, 0)) ∈ MblFn ↔ (𝑥𝐴𝐵) ∈ MblFn))
31 eqid 2621 . . . . . . . . . 10 ℝ = ℝ
3224imim2i 16 . . . . . . . . . . . . . . . 16 ((𝑥𝐴𝐵 ∈ ℂ) → (𝑥𝐴 → if(𝐵 ∈ ℂ, 𝐵, 0) = 𝐵))
3332imp 445 . . . . . . . . . . . . . . 15 (((𝑥𝐴𝐵 ∈ ℂ) ∧ 𝑥𝐴) → if(𝐵 ∈ ℂ, 𝐵, 0) = 𝐵)
3433fveq2d 6162 . . . . . . . . . . . . . 14 (((𝑥𝐴𝐵 ∈ ℂ) ∧ 𝑥𝐴) → (ℜ‘if(𝐵 ∈ ℂ, 𝐵, 0)) = (ℜ‘𝐵))
3534ibllem 23471 . . . . . . . . . . . . 13 ((𝑥𝐴𝐵 ∈ ℂ) → if((𝑥𝐴 ∧ 0 ≤ (ℜ‘if(𝐵 ∈ ℂ, 𝐵, 0))), (ℜ‘if(𝐵 ∈ ℂ, 𝐵, 0)), 0) = if((𝑥𝐴 ∧ 0 ≤ (ℜ‘𝐵)), (ℜ‘𝐵), 0))
3635a1d 25 . . . . . . . . . . . 12 ((𝑥𝐴𝐵 ∈ ℂ) → (𝑥 ∈ ℝ → if((𝑥𝐴 ∧ 0 ≤ (ℜ‘if(𝐵 ∈ ℂ, 𝐵, 0))), (ℜ‘if(𝐵 ∈ ℂ, 𝐵, 0)), 0) = if((𝑥𝐴 ∧ 0 ≤ (ℜ‘𝐵)), (ℜ‘𝐵), 0)))
3736ralimi2 2945 . . . . . . . . . . 11 (∀𝑥𝐴 𝐵 ∈ ℂ → ∀𝑥 ∈ ℝ if((𝑥𝐴 ∧ 0 ≤ (ℜ‘if(𝐵 ∈ ℂ, 𝐵, 0))), (ℜ‘if(𝐵 ∈ ℂ, 𝐵, 0)), 0) = if((𝑥𝐴 ∧ 0 ≤ (ℜ‘𝐵)), (ℜ‘𝐵), 0))
3823, 37syl 17 . . . . . . . . . 10 ((𝜑 ∧ (𝑥𝐴𝐵) ∈ MblFn) → ∀𝑥 ∈ ℝ if((𝑥𝐴 ∧ 0 ≤ (ℜ‘if(𝐵 ∈ ℂ, 𝐵, 0))), (ℜ‘if(𝐵 ∈ ℂ, 𝐵, 0)), 0) = if((𝑥𝐴 ∧ 0 ≤ (ℜ‘𝐵)), (ℜ‘𝐵), 0))
39 mpteq12 4706 . . . . . . . . . 10 ((ℝ = ℝ ∧ ∀𝑥 ∈ ℝ if((𝑥𝐴 ∧ 0 ≤ (ℜ‘if(𝐵 ∈ ℂ, 𝐵, 0))), (ℜ‘if(𝐵 ∈ ℂ, 𝐵, 0)), 0) = if((𝑥𝐴 ∧ 0 ≤ (ℜ‘𝐵)), (ℜ‘𝐵), 0)) → (𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ (ℜ‘if(𝐵 ∈ ℂ, 𝐵, 0))), (ℜ‘if(𝐵 ∈ ℂ, 𝐵, 0)), 0)) = (𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ (ℜ‘𝐵)), (ℜ‘𝐵), 0)))
4031, 38, 39sylancr 694 . . . . . . . . 9 ((𝜑 ∧ (𝑥𝐴𝐵) ∈ MblFn) → (𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ (ℜ‘if(𝐵 ∈ ℂ, 𝐵, 0))), (ℜ‘if(𝐵 ∈ ℂ, 𝐵, 0)), 0)) = (𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ (ℜ‘𝐵)), (ℜ‘𝐵), 0)))
4140fveq2d 6162 . . . . . . . 8 ((𝜑 ∧ (𝑥𝐴𝐵) ∈ MblFn) → (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ (ℜ‘if(𝐵 ∈ ℂ, 𝐵, 0))), (ℜ‘if(𝐵 ∈ ℂ, 𝐵, 0)), 0))) = (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ (ℜ‘𝐵)), (ℜ‘𝐵), 0))))
42 itgcnlem.r . . . . . . . 8 𝑅 = (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ (ℜ‘𝐵)), (ℜ‘𝐵), 0)))
4341, 42syl6eqr 2673 . . . . . . 7 ((𝜑 ∧ (𝑥𝐴𝐵) ∈ MblFn) → (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ (ℜ‘if(𝐵 ∈ ℂ, 𝐵, 0))), (ℜ‘if(𝐵 ∈ ℂ, 𝐵, 0)), 0))) = 𝑅)
4443eleq1d 2683 . . . . . 6 ((𝜑 ∧ (𝑥𝐴𝐵) ∈ MblFn) → ((∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ (ℜ‘if(𝐵 ∈ ℂ, 𝐵, 0))), (ℜ‘if(𝐵 ∈ ℂ, 𝐵, 0)), 0))) ∈ ℝ ↔ 𝑅 ∈ ℝ))
4534negeqd 10235 . . . . . . . . . . . . . 14 (((𝑥𝐴𝐵 ∈ ℂ) ∧ 𝑥𝐴) → -(ℜ‘if(𝐵 ∈ ℂ, 𝐵, 0)) = -(ℜ‘𝐵))
4645ibllem 23471 . . . . . . . . . . . . 13 ((𝑥𝐴𝐵 ∈ ℂ) → if((𝑥𝐴 ∧ 0 ≤ -(ℜ‘if(𝐵 ∈ ℂ, 𝐵, 0))), -(ℜ‘if(𝐵 ∈ ℂ, 𝐵, 0)), 0) = if((𝑥𝐴 ∧ 0 ≤ -(ℜ‘𝐵)), -(ℜ‘𝐵), 0))
4746a1d 25 . . . . . . . . . . . 12 ((𝑥𝐴𝐵 ∈ ℂ) → (𝑥 ∈ ℝ → if((𝑥𝐴 ∧ 0 ≤ -(ℜ‘if(𝐵 ∈ ℂ, 𝐵, 0))), -(ℜ‘if(𝐵 ∈ ℂ, 𝐵, 0)), 0) = if((𝑥𝐴 ∧ 0 ≤ -(ℜ‘𝐵)), -(ℜ‘𝐵), 0)))
4847ralimi2 2945 . . . . . . . . . . 11 (∀𝑥𝐴 𝐵 ∈ ℂ → ∀𝑥 ∈ ℝ if((𝑥𝐴 ∧ 0 ≤ -(ℜ‘if(𝐵 ∈ ℂ, 𝐵, 0))), -(ℜ‘if(𝐵 ∈ ℂ, 𝐵, 0)), 0) = if((𝑥𝐴 ∧ 0 ≤ -(ℜ‘𝐵)), -(ℜ‘𝐵), 0))
4923, 48syl 17 . . . . . . . . . 10 ((𝜑 ∧ (𝑥𝐴𝐵) ∈ MblFn) → ∀𝑥 ∈ ℝ if((𝑥𝐴 ∧ 0 ≤ -(ℜ‘if(𝐵 ∈ ℂ, 𝐵, 0))), -(ℜ‘if(𝐵 ∈ ℂ, 𝐵, 0)), 0) = if((𝑥𝐴 ∧ 0 ≤ -(ℜ‘𝐵)), -(ℜ‘𝐵), 0))
50 mpteq12 4706 . . . . . . . . . 10 ((ℝ = ℝ ∧ ∀𝑥 ∈ ℝ if((𝑥𝐴 ∧ 0 ≤ -(ℜ‘if(𝐵 ∈ ℂ, 𝐵, 0))), -(ℜ‘if(𝐵 ∈ ℂ, 𝐵, 0)), 0) = if((𝑥𝐴 ∧ 0 ≤ -(ℜ‘𝐵)), -(ℜ‘𝐵), 0)) → (𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ -(ℜ‘if(𝐵 ∈ ℂ, 𝐵, 0))), -(ℜ‘if(𝐵 ∈ ℂ, 𝐵, 0)), 0)) = (𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ -(ℜ‘𝐵)), -(ℜ‘𝐵), 0)))
5131, 49, 50sylancr 694 . . . . . . . . 9 ((𝜑 ∧ (𝑥𝐴𝐵) ∈ MblFn) → (𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ -(ℜ‘if(𝐵 ∈ ℂ, 𝐵, 0))), -(ℜ‘if(𝐵 ∈ ℂ, 𝐵, 0)), 0)) = (𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ -(ℜ‘𝐵)), -(ℜ‘𝐵), 0)))
5251fveq2d 6162 . . . . . . . 8 ((𝜑 ∧ (𝑥𝐴𝐵) ∈ MblFn) → (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ -(ℜ‘if(𝐵 ∈ ℂ, 𝐵, 0))), -(ℜ‘if(𝐵 ∈ ℂ, 𝐵, 0)), 0))) = (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ -(ℜ‘𝐵)), -(ℜ‘𝐵), 0))))
53 itgcnlem.s . . . . . . . 8 𝑆 = (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ -(ℜ‘𝐵)), -(ℜ‘𝐵), 0)))
5452, 53syl6eqr 2673 . . . . . . 7 ((𝜑 ∧ (𝑥𝐴𝐵) ∈ MblFn) → (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ -(ℜ‘if(𝐵 ∈ ℂ, 𝐵, 0))), -(ℜ‘if(𝐵 ∈ ℂ, 𝐵, 0)), 0))) = 𝑆)
5554eleq1d 2683 . . . . . 6 ((𝜑 ∧ (𝑥𝐴𝐵) ∈ MblFn) → ((∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ -(ℜ‘if(𝐵 ∈ ℂ, 𝐵, 0))), -(ℜ‘if(𝐵 ∈ ℂ, 𝐵, 0)), 0))) ∈ ℝ ↔ 𝑆 ∈ ℝ))
5644, 55anbi12d 746 . . . . 5 ((𝜑 ∧ (𝑥𝐴𝐵) ∈ MblFn) → (((∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ (ℜ‘if(𝐵 ∈ ℂ, 𝐵, 0))), (ℜ‘if(𝐵 ∈ ℂ, 𝐵, 0)), 0))) ∈ ℝ ∧ (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ -(ℜ‘if(𝐵 ∈ ℂ, 𝐵, 0))), -(ℜ‘if(𝐵 ∈ ℂ, 𝐵, 0)), 0))) ∈ ℝ) ↔ (𝑅 ∈ ℝ ∧ 𝑆 ∈ ℝ)))
5733fveq2d 6162 . . . . . . . . . . . . . 14 (((𝑥𝐴𝐵 ∈ ℂ) ∧ 𝑥𝐴) → (ℑ‘if(𝐵 ∈ ℂ, 𝐵, 0)) = (ℑ‘𝐵))
5857ibllem 23471 . . . . . . . . . . . . 13 ((𝑥𝐴𝐵 ∈ ℂ) → if((𝑥𝐴 ∧ 0 ≤ (ℑ‘if(𝐵 ∈ ℂ, 𝐵, 0))), (ℑ‘if(𝐵 ∈ ℂ, 𝐵, 0)), 0) = if((𝑥𝐴 ∧ 0 ≤ (ℑ‘𝐵)), (ℑ‘𝐵), 0))
5958a1d 25 . . . . . . . . . . . 12 ((𝑥𝐴𝐵 ∈ ℂ) → (𝑥 ∈ ℝ → if((𝑥𝐴 ∧ 0 ≤ (ℑ‘if(𝐵 ∈ ℂ, 𝐵, 0))), (ℑ‘if(𝐵 ∈ ℂ, 𝐵, 0)), 0) = if((𝑥𝐴 ∧ 0 ≤ (ℑ‘𝐵)), (ℑ‘𝐵), 0)))
6059ralimi2 2945 . . . . . . . . . . 11 (∀𝑥𝐴 𝐵 ∈ ℂ → ∀𝑥 ∈ ℝ if((𝑥𝐴 ∧ 0 ≤ (ℑ‘if(𝐵 ∈ ℂ, 𝐵, 0))), (ℑ‘if(𝐵 ∈ ℂ, 𝐵, 0)), 0) = if((𝑥𝐴 ∧ 0 ≤ (ℑ‘𝐵)), (ℑ‘𝐵), 0))
6123, 60syl 17 . . . . . . . . . 10 ((𝜑 ∧ (𝑥𝐴𝐵) ∈ MblFn) → ∀𝑥 ∈ ℝ if((𝑥𝐴 ∧ 0 ≤ (ℑ‘if(𝐵 ∈ ℂ, 𝐵, 0))), (ℑ‘if(𝐵 ∈ ℂ, 𝐵, 0)), 0) = if((𝑥𝐴 ∧ 0 ≤ (ℑ‘𝐵)), (ℑ‘𝐵), 0))
62 mpteq12 4706 . . . . . . . . . 10 ((ℝ = ℝ ∧ ∀𝑥 ∈ ℝ if((𝑥𝐴 ∧ 0 ≤ (ℑ‘if(𝐵 ∈ ℂ, 𝐵, 0))), (ℑ‘if(𝐵 ∈ ℂ, 𝐵, 0)), 0) = if((𝑥𝐴 ∧ 0 ≤ (ℑ‘𝐵)), (ℑ‘𝐵), 0)) → (𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ (ℑ‘if(𝐵 ∈ ℂ, 𝐵, 0))), (ℑ‘if(𝐵 ∈ ℂ, 𝐵, 0)), 0)) = (𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ (ℑ‘𝐵)), (ℑ‘𝐵), 0)))
6331, 61, 62sylancr 694 . . . . . . . . 9 ((𝜑 ∧ (𝑥𝐴𝐵) ∈ MblFn) → (𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ (ℑ‘if(𝐵 ∈ ℂ, 𝐵, 0))), (ℑ‘if(𝐵 ∈ ℂ, 𝐵, 0)), 0)) = (𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ (ℑ‘𝐵)), (ℑ‘𝐵), 0)))
6463fveq2d 6162 . . . . . . . 8 ((𝜑 ∧ (𝑥𝐴𝐵) ∈ MblFn) → (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ (ℑ‘if(𝐵 ∈ ℂ, 𝐵, 0))), (ℑ‘if(𝐵 ∈ ℂ, 𝐵, 0)), 0))) = (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ (ℑ‘𝐵)), (ℑ‘𝐵), 0))))
65 itgcnlem.t . . . . . . . 8 𝑇 = (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ (ℑ‘𝐵)), (ℑ‘𝐵), 0)))
6664, 65syl6eqr 2673 . . . . . . 7 ((𝜑 ∧ (𝑥𝐴𝐵) ∈ MblFn) → (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ (ℑ‘if(𝐵 ∈ ℂ, 𝐵, 0))), (ℑ‘if(𝐵 ∈ ℂ, 𝐵, 0)), 0))) = 𝑇)
6766eleq1d 2683 . . . . . 6 ((𝜑 ∧ (𝑥𝐴𝐵) ∈ MblFn) → ((∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ (ℑ‘if(𝐵 ∈ ℂ, 𝐵, 0))), (ℑ‘if(𝐵 ∈ ℂ, 𝐵, 0)), 0))) ∈ ℝ ↔ 𝑇 ∈ ℝ))
6857negeqd 10235 . . . . . . . . . . . . . 14 (((𝑥𝐴𝐵 ∈ ℂ) ∧ 𝑥𝐴) → -(ℑ‘if(𝐵 ∈ ℂ, 𝐵, 0)) = -(ℑ‘𝐵))
6968ibllem 23471 . . . . . . . . . . . . 13 ((𝑥𝐴𝐵 ∈ ℂ) → if((𝑥𝐴 ∧ 0 ≤ -(ℑ‘if(𝐵 ∈ ℂ, 𝐵, 0))), -(ℑ‘if(𝐵 ∈ ℂ, 𝐵, 0)), 0) = if((𝑥𝐴 ∧ 0 ≤ -(ℑ‘𝐵)), -(ℑ‘𝐵), 0))
7069a1d 25 . . . . . . . . . . . 12 ((𝑥𝐴𝐵 ∈ ℂ) → (𝑥 ∈ ℝ → if((𝑥𝐴 ∧ 0 ≤ -(ℑ‘if(𝐵 ∈ ℂ, 𝐵, 0))), -(ℑ‘if(𝐵 ∈ ℂ, 𝐵, 0)), 0) = if((𝑥𝐴 ∧ 0 ≤ -(ℑ‘𝐵)), -(ℑ‘𝐵), 0)))
7170ralimi2 2945 . . . . . . . . . . 11 (∀𝑥𝐴 𝐵 ∈ ℂ → ∀𝑥 ∈ ℝ if((𝑥𝐴 ∧ 0 ≤ -(ℑ‘if(𝐵 ∈ ℂ, 𝐵, 0))), -(ℑ‘if(𝐵 ∈ ℂ, 𝐵, 0)), 0) = if((𝑥𝐴 ∧ 0 ≤ -(ℑ‘𝐵)), -(ℑ‘𝐵), 0))
7223, 71syl 17 . . . . . . . . . 10 ((𝜑 ∧ (𝑥𝐴𝐵) ∈ MblFn) → ∀𝑥 ∈ ℝ if((𝑥𝐴 ∧ 0 ≤ -(ℑ‘if(𝐵 ∈ ℂ, 𝐵, 0))), -(ℑ‘if(𝐵 ∈ ℂ, 𝐵, 0)), 0) = if((𝑥𝐴 ∧ 0 ≤ -(ℑ‘𝐵)), -(ℑ‘𝐵), 0))
73 mpteq12 4706 . . . . . . . . . 10 ((ℝ = ℝ ∧ ∀𝑥 ∈ ℝ if((𝑥𝐴 ∧ 0 ≤ -(ℑ‘if(𝐵 ∈ ℂ, 𝐵, 0))), -(ℑ‘if(𝐵 ∈ ℂ, 𝐵, 0)), 0) = if((𝑥𝐴 ∧ 0 ≤ -(ℑ‘𝐵)), -(ℑ‘𝐵), 0)) → (𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ -(ℑ‘if(𝐵 ∈ ℂ, 𝐵, 0))), -(ℑ‘if(𝐵 ∈ ℂ, 𝐵, 0)), 0)) = (𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ -(ℑ‘𝐵)), -(ℑ‘𝐵), 0)))
7431, 72, 73sylancr 694 . . . . . . . . 9 ((𝜑 ∧ (𝑥𝐴𝐵) ∈ MblFn) → (𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ -(ℑ‘if(𝐵 ∈ ℂ, 𝐵, 0))), -(ℑ‘if(𝐵 ∈ ℂ, 𝐵, 0)), 0)) = (𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ -(ℑ‘𝐵)), -(ℑ‘𝐵), 0)))
7574fveq2d 6162 . . . . . . . 8 ((𝜑 ∧ (𝑥𝐴𝐵) ∈ MblFn) → (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ -(ℑ‘if(𝐵 ∈ ℂ, 𝐵, 0))), -(ℑ‘if(𝐵 ∈ ℂ, 𝐵, 0)), 0))) = (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ -(ℑ‘𝐵)), -(ℑ‘𝐵), 0))))
76 itgcnlem.u . . . . . . . 8 𝑈 = (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ -(ℑ‘𝐵)), -(ℑ‘𝐵), 0)))
7775, 76syl6eqr 2673 . . . . . . 7 ((𝜑 ∧ (𝑥𝐴𝐵) ∈ MblFn) → (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ -(ℑ‘if(𝐵 ∈ ℂ, 𝐵, 0))), -(ℑ‘if(𝐵 ∈ ℂ, 𝐵, 0)), 0))) = 𝑈)
7877eleq1d 2683 . . . . . 6 ((𝜑 ∧ (𝑥𝐴𝐵) ∈ MblFn) → ((∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ -(ℑ‘if(𝐵 ∈ ℂ, 𝐵, 0))), -(ℑ‘if(𝐵 ∈ ℂ, 𝐵, 0)), 0))) ∈ ℝ ↔ 𝑈 ∈ ℝ))
7967, 78anbi12d 746 . . . . 5 ((𝜑 ∧ (𝑥𝐴𝐵) ∈ MblFn) → (((∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ (ℑ‘if(𝐵 ∈ ℂ, 𝐵, 0))), (ℑ‘if(𝐵 ∈ ℂ, 𝐵, 0)), 0))) ∈ ℝ ∧ (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ -(ℑ‘if(𝐵 ∈ ℂ, 𝐵, 0))), -(ℑ‘if(𝐵 ∈ ℂ, 𝐵, 0)), 0))) ∈ ℝ) ↔ (𝑇 ∈ ℝ ∧ 𝑈 ∈ ℝ)))
8030, 56, 793anbi123d 1396 . . . 4 ((𝜑 ∧ (𝑥𝐴𝐵) ∈ MblFn) → (((𝑥𝐴 ↦ if(𝐵 ∈ ℂ, 𝐵, 0)) ∈ MblFn ∧ ((∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ (ℜ‘if(𝐵 ∈ ℂ, 𝐵, 0))), (ℜ‘if(𝐵 ∈ ℂ, 𝐵, 0)), 0))) ∈ ℝ ∧ (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ -(ℜ‘if(𝐵 ∈ ℂ, 𝐵, 0))), -(ℜ‘if(𝐵 ∈ ℂ, 𝐵, 0)), 0))) ∈ ℝ) ∧ ((∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ (ℑ‘if(𝐵 ∈ ℂ, 𝐵, 0))), (ℑ‘if(𝐵 ∈ ℂ, 𝐵, 0)), 0))) ∈ ℝ ∧ (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ -(ℑ‘if(𝐵 ∈ ℂ, 𝐵, 0))), -(ℑ‘if(𝐵 ∈ ℂ, 𝐵, 0)), 0))) ∈ ℝ)) ↔ ((𝑥𝐴𝐵) ∈ MblFn ∧ (𝑅 ∈ ℝ ∧ 𝑆 ∈ ℝ) ∧ (𝑇 ∈ ℝ ∧ 𝑈 ∈ ℝ))))
8113, 29, 803bitr3d 298 . . 3 ((𝜑 ∧ (𝑥𝐴𝐵) ∈ MblFn) → ((𝑥𝐴𝐵) ∈ 𝐿1 ↔ ((𝑥𝐴𝐵) ∈ MblFn ∧ (𝑅 ∈ ℝ ∧ 𝑆 ∈ ℝ) ∧ (𝑇 ∈ ℝ ∧ 𝑈 ∈ ℝ))))
8281ex 450 . 2 (𝜑 → ((𝑥𝐴𝐵) ∈ MblFn → ((𝑥𝐴𝐵) ∈ 𝐿1 ↔ ((𝑥𝐴𝐵) ∈ MblFn ∧ (𝑅 ∈ ℝ ∧ 𝑆 ∈ ℝ) ∧ (𝑇 ∈ ℝ ∧ 𝑈 ∈ ℝ)))))
832, 4, 82pm5.21ndd 369 1 (𝜑 → ((𝑥𝐴𝐵) ∈ 𝐿1 ↔ ((𝑥𝐴𝐵) ∈ MblFn ∧ (𝑅 ∈ ℝ ∧ 𝑆 ∈ ℝ) ∧ (𝑇 ∈ ℝ ∧ 𝑈 ∈ ℝ))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 384  w3a 1036   = wceq 1480  wcel 1987  wral 2908  ifcif 4064   class class class wbr 4623  cmpt 4683  dom cdm 5084  wf 5853  cfv 5857  cc 9894  cr 9895  0cc0 9896  cle 10035  -cneg 10227  cre 13787  cim 13788  MblFncmbf 23323  2citg2 23325  𝐿1cibl 23326
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-8 1989  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601  ax-sep 4751  ax-nul 4759  ax-pow 4813  ax-pr 4877  ax-un 6914  ax-cnex 9952  ax-resscn 9953  ax-1cn 9954  ax-icn 9955  ax-addcl 9956  ax-addrcl 9957  ax-mulcl 9958  ax-mulrcl 9959  ax-mulcom 9960  ax-addass 9961  ax-mulass 9962  ax-distr 9963  ax-i2m1 9964  ax-1ne0 9965  ax-1rid 9966  ax-rnegex 9967  ax-rrecex 9968  ax-cnre 9969  ax-pre-lttri 9970  ax-pre-lttrn 9971  ax-pre-ltadd 9972  ax-pre-mulgt0 9973
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1037  df-3an 1038  df-tru 1483  df-ex 1702  df-nf 1707  df-sb 1878  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-ne 2791  df-nel 2894  df-ral 2913  df-rex 2914  df-reu 2915  df-rmo 2916  df-rab 2917  df-v 3192  df-sbc 3423  df-csb 3520  df-dif 3563  df-un 3565  df-in 3567  df-ss 3574  df-pss 3576  df-nul 3898  df-if 4065  df-pw 4138  df-sn 4156  df-pr 4158  df-tp 4160  df-op 4162  df-uni 4410  df-iun 4494  df-br 4624  df-opab 4684  df-mpt 4685  df-tr 4723  df-eprel 4995  df-id 4999  df-po 5005  df-so 5006  df-fr 5043  df-we 5045  df-xp 5090  df-rel 5091  df-cnv 5092  df-co 5093  df-dm 5094  df-rn 5095  df-res 5096  df-ima 5097  df-pred 5649  df-ord 5695  df-on 5696  df-lim 5697  df-suc 5698  df-iota 5820  df-fun 5859  df-fn 5860  df-f 5861  df-f1 5862  df-fo 5863  df-f1o 5864  df-fv 5865  df-riota 6576  df-ov 6618  df-oprab 6619  df-mpt2 6620  df-om 7028  df-1st 7128  df-2nd 7129  df-wrecs 7367  df-recs 7428  df-rdg 7466  df-er 7702  df-pm 7820  df-en 7916  df-dom 7917  df-sdom 7918  df-pnf 10036  df-mnf 10037  df-xr 10038  df-ltxr 10039  df-le 10040  df-sub 10228  df-neg 10229  df-div 10645  df-nn 10981  df-2 11039  df-3 11040  df-n0 11253  df-z 11338  df-uz 11648  df-fz 12285  df-seq 12758  df-exp 12817  df-cj 13789  df-re 13790  df-im 13791  df-mbf 23328  df-ibl 23331
This theorem is referenced by:  itgcnlem  23496  iblrelem  23497  ibladd  23527  ibladdnc  33138
  Copyright terms: Public domain W3C validator